def binarizer_deserializer_test(self): binarizer = Binarizer(threshold=0.0) binarizer.mlinit(input_features=['a'], output_features=['a_binary']) Xres = binarizer.fit_transform(self.df[['a']]) # Test that the binarizer functions as expected self.assertEqual( float(len(self.df[self.df.a >= 0])) / 10.0, Xres.mean()) binarizer.serialize_to_bundle(self.tmp_dir, binarizer.name) # Deserialize the Binarizer node_name = "{}.node".format(binarizer.name) binarizer_tf_ds = Binarizer() binarizer_tf_ds.deserialize_from_bundle(self.tmp_dir, node_name) # Transform some sample data res_a = binarizer.transform(self.df[['a']]) res_b = binarizer_tf_ds.transform(self.df[['a']]) self.assertEqual(res_a[0][0], res_b[0][0]) self.assertEqual(res_a[1][0], res_b[1][0]) self.assertEqual(res_a[2][0], res_b[2][0]) self.assertEqual(res_a[3][0], res_b[3][0])
def binarizer_deserializer_test(self): extract_features = ['a'] feature_extractor = FeatureExtractor( input_scalars=['a'], output_vector='extracted_a_output', output_vector_items=["{}_out".format(x) for x in extract_features]) binarizer = Binarizer(threshold=0.0) binarizer.mlinit(prior_tf=feature_extractor, output_features='a_binary') Xres = binarizer.fit_transform(self.df[['a']]) # Test that the binarizer functions as expected self.assertEqual( float(len(self.df[self.df.a >= 0])) / 10.0, Xres.mean()) binarizer.serialize_to_bundle(self.tmp_dir, binarizer.name) # Deserialize the Binarizer node_name = "{}.node".format(binarizer.name) binarizer_tf_ds = Binarizer() binarizer_tf_ds.deserialize_from_bundle(self.tmp_dir, node_name) # Transform some sample data res_a = binarizer.transform(self.df[['a']]) res_b = binarizer_tf_ds.transform(self.df[['a']]) self.assertEqual(res_a[0][0], res_b[0][0]) self.assertEqual(res_a[1][0], res_b[1][0]) self.assertEqual(res_a[2][0], res_b[2][0]) self.assertEqual(res_a[3][0], res_b[3][0])
def binarizer_test(self): binarizer = Binarizer(threshold=0.0) binarizer.mlinit(input_features='a', output_features='a_binary') Xres = binarizer.fit_transform(self.df[['a']]) # Test that the binarizer functions as expected self.assertEqual(float(len(self.df[self.df.a >= 0]))/10.0, Xres.mean()) binarizer.serialize_to_bundle(self.tmp_dir, binarizer.name) expected_model = { "op": "binarizer", "attributes": { "threshold": { "type": "double", "value": 0.0 } } } # Test model.json with open("{}/{}.node/model.json".format(self.tmp_dir, binarizer.name)) as json_data: model = json.load(json_data) self.assertEqual(expected_model['attributes']['threshold']['value'], model['attributes']['threshold']['value'])
def binarizer_test(self): extract_features = ['a'] feature_extractor = FeatureExtractor( input_scalars=['a'], output_vector='extracted_a_output', output_vector_items=["{}_out".format(x) for x in extract_features]) binarizer = Binarizer(threshold=0) binarizer.mlinit(prior_tf=feature_extractor, output_features='a_binary') Xres = binarizer.fit_transform(self.df[['a']]) # Test that the binarizer functions as expected self.assertEqual( float(len(self.df[self.df.a >= 0])) / 10.0, Xres.mean()) binarizer.serialize_to_bundle(self.tmp_dir, binarizer.name) expected_model = { "op": "sklearn_binarizer", "attributes": { "threshold": { "double": 0.0 } } } # Test model.json with open("{}/{}.node/model.json".format(self.tmp_dir, binarizer.name)) as json_data: model = json.load(json_data) self.assertEqual(expected_model['attributes']['threshold']['double'], model['attributes']['threshold']['double']) self.assertEqual(expected_model['op'], model['op']) # Test node.json with open("{}/{}.node/node.json".format(self.tmp_dir, binarizer.name)) as json_data: node = json.load(json_data) self.assertEqual(binarizer.name, node['name']) self.assertEqual(binarizer.input_features, node['shape']['inputs'][0]['name']) self.assertEqual(binarizer.output_features, node['shape']['outputs'][0]['name'])