示例#1
0
文件: cli.py 项目: zge/mlflow
    if not backend_store_uri:
        backend_store_uri = DEFAULT_LOCAL_FILE_AND_ARTIFACT_PATH

    if not default_artifact_root:
        if _is_local_uri(backend_store_uri):
            default_artifact_root = backend_store_uri
        else:
            eprint("Option 'default-artifact-root' is required, when backend store is not "
                   "local file based.")
            sys.exit(1)

    try:
        _run_server(backend_store_uri, default_artifact_root, host, port, workers, static_prefix,
                    gunicorn_opts)
    except ShellCommandException:
        eprint("Running the mlflow server failed. Please see the logs above for details.")
        sys.exit(1)


cli.add_command(mlflow.pyfunc.cli.commands)
cli.add_command(mlflow.rfunc.cli.commands)
cli.add_command(mlflow.sagemaker.cli.commands)
cli.add_command(mlflow.experiments.commands)
cli.add_command(mlflow.store.cli.commands)
cli.add_command(mlflow.azureml.cli.commands)
cli.add_command(mlflow.runs.commands)
cli.add_command(mlflow.db.commands)

if __name__ == '__main__':
    cli()
示例#2
0
文件: cli.py 项目: wanglicq/mlflow
def server(file_store, default_artifact_root, host, port, workers,
           static_prefix, gunicorn_opts):
    """
    Run the MLflow tracking server.

    The server which listen on http://localhost:5000 by default, and only accept connections from
    the local machine. To let the server accept connections from other machines, you will need to
    pass --host 0.0.0.0 to listen on all network interfaces (or a specific interface address).
    """
    try:
        _run_server(file_store, default_artifact_root, host, port, workers,
                    static_prefix, gunicorn_opts)
    except ShellCommandException:
        print(
            "Running the mlflow server failed. Please see the logs above for details.",
            file=sys.stderr)
        sys.exit(1)


cli.add_command(mlflow.sklearn.commands)
cli.add_command(mlflow.data.download)
cli.add_command(mlflow.pyfunc.cli.commands)
cli.add_command(mlflow.rfunc.cli.commands)
cli.add_command(mlflow.sagemaker.cli.commands)
cli.add_command(mlflow.azureml.cli.commands)
cli.add_command(mlflow.experiments.commands)
cli.add_command(mlflow.store.cli.commands)

if __name__ == '__main__':
    cli()
示例#3
0
文件: cli.py 项目: zied2/mlflow
                "local file based.")
            sys.exit(1)

    try:
        initialize_backend_stores(backend_store_uri, default_artifact_root)
    except Exception as e:  # pylint: disable=broad-except
        _logger.error("Error initializing backend store")
        _logger.exception(e)
        sys.exit(1)

    try:
        _run_server(backend_store_uri, default_artifact_root, host, port,
                    static_prefix, workers, gunicorn_opts, waitress_opts)
    except ShellCommandException:
        eprint(
            "Running the mlflow server failed. Please see the logs above for details."
        )
        sys.exit(1)


cli.add_command(mlflow.models.cli.commands)
cli.add_command(mlflow.sagemaker.cli.commands)
cli.add_command(mlflow.experiments.commands)
cli.add_command(mlflow.store.artifact.cli.commands)
cli.add_command(mlflow.azureml.cli.commands)
cli.add_command(mlflow.runs.commands)
cli.add_command(mlflow.db.commands)

if __name__ == '__main__':
    cli()