示例#1
0
def test_autologging_disabled_logging_with_or_without_active_run(
        spark_session, format_to_file_path):
    mlflow.spark.autolog(disable=True)
    data_format = list(format_to_file_path.keys())[0]
    file_path = format_to_file_path[data_format]
    df = (spark_session.read.format(data_format).option(
        "header", "true").option("inferSchema", "true").load(file_path))

    # Reading data source before starting a run
    df.filter("number1 > 0").collect()
    df.limit(2).collect()
    df.collect()

    # If there was any tag info collected it will be logged here
    with mlflow.start_run():
        run_id = mlflow.active_run().info.run_id
    time.sleep(1)

    # Confirm nothing was logged.
    run = mlflow.get_run(run_id)
    _assert_spark_data_not_logged(run=run)

    # Reading data source during an active run
    with mlflow.start_run():
        run_id = mlflow.active_run().info.run_id
        df.collect()
        time.sleep(1)
    run = mlflow.get_run(run_id)
    _assert_spark_data_not_logged(run=run)
示例#2
0
def test_autologging_disabled_then_enabled(spark_session, format_to_file_path):
    mlflow.spark.autolog(disable=True)
    data_format = list(format_to_file_path.keys())[0]
    file_path = format_to_file_path[data_format]
    df = (
        spark_session.read.format(data_format)
        .option("header", "true")
        .option("inferSchema", "true")
        .load(file_path)
    )
    # Logging is disabled here.
    with mlflow.start_run():
        run_id = mlflow.active_run().info.run_id
        df.collect()
        time.sleep(1)
    run = mlflow.get_run(run_id)
    _assert_spark_data_not_logged(run=run)

    # Logging is enabled here.
    mlflow.spark.autolog(disable=False)
    with mlflow.start_run():
        run_id = mlflow.active_run().info.run_id
        df.filter("number1 > 0").collect()
        time.sleep(1)
    run = mlflow.get_run(run_id)
    _assert_spark_data_logged(run=run, path=file_path, data_format=data_format)
示例#3
0
def test_autologging_dedups_multiple_reads_of_same_datasource(
        spark_session, format_to_file_path):
    mlflow.spark.autolog()
    data_format = list(format_to_file_path.keys())[0]
    file_path = format_to_file_path[data_format]
    df = (spark_session.read.format(data_format).option(
        "header", "true").option("inferSchema", "true").load(file_path))
    with mlflow.start_run():
        run_id = mlflow.active_run().info.run_id
        df.collect()
        df.filter("number1 > 0").collect()
        df.limit(2).collect()
        df.collect()
        time.sleep(1)
    run = mlflow.get_run(run_id)
    _assert_spark_data_logged(run=run, path=file_path, data_format=data_format)
    # Test context provider flow
    df.filter("number1 > 0").collect()
    df.limit(2).collect()
    df.collect()
    with mlflow.start_run():
        run_id2 = mlflow.active_run().info.run_id
    time.sleep(1)
    run2 = mlflow.get_run(run_id2)
    _assert_spark_data_logged(run=run2,
                              path=file_path,
                              data_format=data_format)
示例#4
0
def load_artifacts(run_id: str, device: torch.device = torch.device("cpu")) -> Dict:
    """Load artifacts for current model.

    Args:
        run_id (str): ID of the model run to load artifacts.
        device (torch.device): Device to run model on. Defaults to CPU.

    Returns:
        Artifacts needed for inference.
    """
    # Load artifacts
    artifact_uri = mlflow.get_run(run_id=run_id).info.artifact_uri.split("file://")[-1]
    params = Namespace(**utils.load_dict(filepath=Path(artifact_uri, "params.json")))
    label_encoder = data.MultiLabelLabelEncoder.load(fp=Path(artifact_uri, "label_encoder.json"))
    tokenizer = data.Tokenizer.load(fp=Path(artifact_uri, "tokenizer.json"))
    model_state = torch.load(Path(artifact_uri, "model.pt"), map_location=device)
    performance = utils.load_dict(filepath=Path(artifact_uri, "performance.json"))

    # Initialize model
    model = models.initialize_model(
        params=params, vocab_size=len(tokenizer), num_classes=len(label_encoder)
    )
    model.load_state_dict(model_state)

    return {
        "params": params,
        "label_encoder": label_encoder,
        "tokenizer": tokenizer,
        "model": model,
        "performance": performance,
    }
示例#5
0
def test_autologging_of_datasources_with_different_formats(
        spark_session, format_to_file_path):
    mlflow.spark.autolog()
    for data_format, file_path in format_to_file_path.items():
        base_df = (spark_session.read.format(data_format).option(
            "header", "true").option("inferSchema", "true").load(file_path))
        base_df.createOrReplaceTempView("temptable")
        table_df0 = spark_session.table("temptable")
        table_df1 = spark_session.sql(
            "SELECT number1, number2 from temptable LIMIT 5")
        dfs = [
            base_df,
            table_df0,
            table_df1,
            base_df.filter("number1 > 0"),
            base_df.select("number1"),
            base_df.limit(2),
            base_df.filter("number1 > 0").select("number1").limit(2),
        ]

        for df in dfs:
            with mlflow.start_run():
                run_id = mlflow.active_run().info.run_id
                df.collect()
                time.sleep(1)
            run = mlflow.get_run(run_id)
            _assert_spark_data_logged(run=run,
                                      path=file_path,
                                      data_format=data_format)
示例#6
0
def flasslit(mlflowrun: str):
    st.set_option('deprecation.showfileUploaderEncoding', False)
    mlflow_run = mlflow.get_run(mlflowrun)
    class_names = json.loads(mlflow_run.data.params.get("class_names"))
    modelpath = os.path.join(mlflow_run.info.artifact_uri, "saved-model")

    uploaded_file = make_sidebar(mlflow_run, class_names)

    image_array = None
    if uploaded_file is not None:
        image = Image.open(uploaded_file)
        st.subheader("Uploaded image information")
        st.write(image)
        st.image(image)
        image = image.resize((28, 28), Image.ANTIALIAS).convert('L')
        st.subheader("Resized image information")
        st.write(image)
        st.image(image)
        image_array = np.array(image)
        image_array = np.expand_dims(image_array, -1)

    logging.info(f"Loading model from {modelpath}")
    loaded_model = load_mlflow_model(modelpath)
    if image_array is not None:
        res = loaded_model.predict(np.array([image_array]))[0]
        res = [float(prob) for prob in res]
        st.subheader("Predicted class probabilities")
        st.write(dict(zip(class_names, res)))
def test_enabling_autologging_before_spark_session_works(disable):
    mlflow.spark.autolog(disable=disable)

    # creating spark session AFTER autolog was enabled
    spark_session = _get_or_create_spark_session()

    rows = [Row(100)]
    schema = StructType([StructField("number2", IntegerType())])
    rdd = spark_session.sparkContext.parallelize(rows)
    df = spark_session.createDataFrame(rdd, schema)
    tempdir = tempfile.mkdtemp()
    filepath = os.path.join(tempdir, "test-data")
    df.write.option("header", "true").format("csv").save(filepath)

    read_df = (spark_session.read.format("csv").option(
        "header", "true").option("inferSchema", "true").load(filepath))

    with mlflow.start_run():
        run_id = mlflow.active_run().info.run_id
        read_df.collect()
        time.sleep(1)

    run = mlflow.get_run(run_id)
    if disable:
        _assert_spark_data_not_logged(run=run)
    else:
        _assert_spark_data_logged(run=run, path=filepath, data_format="csv")

    shutil.rmtree(tempdir)
    spark_session.stop()
def test_model_is_recorded_when_using_direct_save(spark_model_iris):
    # Patch `is_local_uri` to enforce direct model serialization to DFS
    with mock.patch("mlflow.spark.is_local_uri", return_value=False):
        with mlflow.start_run():
            sparkm.log_model(spark_model=spark_model_iris.model, artifact_path="model")
            current_tags = mlflow.get_run(mlflow.active_run().info.run_id).data.tags
            assert mlflow.utils.mlflow_tags.MLFLOW_LOGGED_MODELS in current_tags
def get_latest_mlrun(params):
    """Get latest mlflow run

    :param params: gdl parameters dictionary
    :return: mlflow run object
    """

    tracking_uri = params['global']['mlflow_uri']
    mlflow.set_tracking_uri(tracking_uri)
    mlexp = mlflow.get_experiment_by_name(
        params['global']['mlflow_experiment_name'])
    exp_id = mlexp.experiment_id
    try:
        run_ids = ([
            x.run_id for x in mlflow.list_run_infos(
                exp_id, max_results=1, order_by=["tag.release DESC"])
        ])
    except AttributeError:
        mlflow_client = mlflow.tracking.MlflowClient(tracking_uri=tracking_uri)
        run_ids = [
            x.run_id
            for x in mlflow_client.list_run_infos(exp_id, run_view_type=3)[0:1]
        ]
    mlrun = mlflow.get_run(run_ids[0])
    return mlrun
示例#10
0
def ab_deployment(name,
                  namespace,
                  secret_name,
                  model_a_name,
                  model_a_version,
                  model_b_name,
                  model_b_version,
                  model_a_traffic=50):

    client = MlflowClient()

    model_a_run_id = next(
        mv.run_id
        for mv in client.search_model_versions(f"name='{model_a_name}'")
        if mv.version == f"{model_a_version}")
    model_a_artifact_uri = mlflow.get_run(model_a_run_id).info.artifact_uri

    model_b_run_id = next(
        mv.run_id
        for mv in client.search_model_versions(f"name='{model_b_name}'")
        if mv.version == f"{model_b_version}")
    model_b_artifact_uri = mlflow.get_run(model_b_run_id).info.artifact_uri

    filename = os.path.join(os.path.dirname(os.path.realpath(__file__)),
                            "ab_deployment.json.j2")

    body = Template(open(filename).read()).render(
        name=name,
        namespace=namespace,
        secret_name=secret_name,
        model_a_name=model_a_name,
        model_a_artifact_uri=model_a_artifact_uri,
        model_b_name=model_b_name,
        model_b_artifact_uri=model_b_artifact_uri,
        model_a_traffic=model_a_traffic,
    )

    token = open("/var/run/secrets/kubernetes.io/serviceaccount/token").read()
    headers = {"Authorization": f"Bearer {token}"}
    url = "https://kubernetes.default.svc.cluster.local"
    endpoint = f"/apis/machinelearning.seldon.io/v1alpha2/namespaces/{namespace}/seldondeployments?fieldManager=kubectl-create"

    return requests.post(url=url + endpoint,
                         json=json.loads(body),
                         headers=headers,
                         verify=False,
                         timeout=30)
示例#11
0
 def log_tags_and_params(self, remote_run_id):
     run_id = self.get_local_run_id()
     mlflow.set_tracking_uri(self.local_experiment_dir)
     run = mlflow.get_run(run_id=run_id)
     params = run.data.params
     tags = run.data.tags
     self.remote_server.set_tags(remote_run_id, tags)
     self.remote_server.log_params(remote_run_id, params)
def _fit_keras_model_no_active_run(pandas_df, epochs):
    orig_runs = mlflow.search_runs()
    orig_run_ids = set(orig_runs["run_id"])
    _fit_keras(pandas_df, epochs)
    new_runs = mlflow.search_runs()
    new_run_ids = set(new_runs["run_id"])
    assert len(new_run_ids) == len(orig_run_ids) + 1
    run_id = (new_run_ids - orig_run_ids).pop()
    return mlflow.get_run(run_id)
示例#13
0
def test_log_params_flatten() -> None:
    with mlflow.start_run() as run:
        params = {"a": {"b": 0}}
        lg.log_params_flatten(params)
        lg.log_params_flatten(params, parent_key="d")
        lg.log_params_flatten(params, sep="_")

    loaded_run = mlflow.get_run(run.info.run_id)
    assert loaded_run.data.params == {"a.b": "0", "a_b": "0", "d.a.b": "0"}
示例#14
0
def test_log_metrics_flatten() -> None:
    with mlflow.start_run() as run:
        metrics = {"a": {"b": 0.0}}
        lg.log_metrics_flatten(metrics)
        lg.log_metrics_flatten(metrics, parent_key="d")
        lg.log_metrics_flatten(metrics, sep="_")

    loaded_run = mlflow.get_run(run.info.run_id)
    assert loaded_run.data.metrics == {"a.b": 0.0, "a_b": 0.0, "d.a.b": 0.0}
    def __init__(self, run=None, run_id=None):
        assert run is not None or run_id is not None
        self.run = run
        self.run_id = run_id

        if self.run_id is None:
            self.run_id = self.run.info.run_id
        elif self.run is None:
            self.run = mlflow.get_run(self.run_id)
示例#16
0
 def assert_tag_value_meets_requirements(run_id):
     """
     Verify that the Spark Datasource tag set on the run has been truncated to the maximum
     tag value length allowed by MLflow
     """
     run = mlflow.get_run(run_id)
     assert _SPARK_TABLE_INFO_TAG_NAME in run.data.tags
     table_info_tag = run.data.tags[_SPARK_TABLE_INFO_TAG_NAME]
     assert len(table_info_tag) == MAX_TAG_VAL_LENGTH
     assert table_info_tag.endswith("...")
示例#17
0
def test_mlflow_logger():

    logger = MlflowLogger(experiment_name="test-experiment",
                          run_name="test_run",
                          tag1="my-tag")

    pipeline = Pipeline.from_config(
        PipelineConfiguration(
            name="test-pipeline",
            head=TaskHeadConfiguration(type=TextClassification,
                                       labels=["A", "B"]),
        ))
    trainer = TrainerConfiguration()

    logger.init_train(pipeline, trainer, training=None)
    for epoch in range(0, 10):
        logger.log_epoch_metrics(epoch, metrics={"key": 10 * epoch})

    model_path = mkdtemp()
    metrics = {"metric": 200}
    logger.end_train(TrainingResults(model_path, metrics))

    run = mlflow.get_run(logger._run_id)
    assert run
    # Tags
    assert "test_run" == run.data.tags[mlflow_tags.MLFLOW_RUN_NAME]
    assert "my-tag" == run.data.tags["tag1"]
    # Parameters
    expected_parmams = {
        "pipeline.features.word.trainable": "True",
        "pipeline.num_parameters": "202",
        "pipeline.num_trainable_parameters": "202",
        "pipeline.features.word.embedding_dim": "50",
        "pipeline.head.type":
        "biome.text.modules.heads.classification.text_classification.TextClassification",
        "pipeline.head.labels": "['A', 'B']",
        "pipeline.name": "test-pipeline",
        "pipeline.tokenizer.lang": "en",
        "trainer.batch_size": "16",
        "trainer.validation_metric": "-loss",
        "trainer.optimizer.type": "adam",
        "trainer.patience": "2",
        "trainer.num_epochs": "20",
        "trainer.num_serialized_models_to_keep": "1",
        "pipeline.tokenizer.remove_space_tokens": "True",
    }
    assert expected_parmams == run.data.params
    # Artifacts
    assert os.path.basename(model_path) in os.listdir(
        urlparse(run.info.artifact_uri).path)
    # Metrics
    for metric in metrics:
        assert (metric in run.data.metrics
                and run.data.metrics[metric] == metrics[metric])
示例#18
0
def test_autologging_disabled_logging_datasource_with_different_formats(
        spark_session, format_to_file_path):
    mlflow.spark.autolog(disable=True)
    for data_format, file_path in format_to_file_path.items():
        df = (spark_session.read.format(data_format).option(
            "header", "true").option("inferSchema", "true").load(file_path))

        with mlflow.start_run():
            run_id = mlflow.active_run().info.run_id
            df.collect()
            time.sleep(1)
        run = mlflow.get_run(run_id)
        _assert_spark_data_not_logged(run=run)
示例#19
0
def _copy_mlflow_results_to_dir(run_id: str, dir_: str):
    """
    Copy MLFlow run artifacts to directory
    :param run_id:
    :param dir_:
    :return:
    """
    artifact_uri: str = mlflow.get_run(run_id).info.artifact_uri
    url = urllib3.util.parse_url(artifact_uri)
    if url.scheme != 'file':
        raise NotImplementedError('Only local artifact storage is supported')

    result_dir = join(dir_, const.SAGEMAKER_MODEL_SUBDIR)
    shutil.copytree(url.path, join(dir_, result_dir))
    logger.info(f'MLFlow run: {run_id} artifacts were copied to {result_dir}')
示例#20
0
def test_autologging_multiple_reads_same_run(spark_session,
                                             format_to_file_path):
    mlflow.spark.autolog()
    with mlflow.start_run():
        for data_format, file_path in format_to_file_path.items():
            run_id = mlflow.active_run().info.run_id
            df = spark_session.read.format(data_format).load(file_path)
            df.collect()
            time.sleep(1)
        run = mlflow.get_run(run_id)
        assert _SPARK_TABLE_INFO_TAG_NAME in run.data.tags
        table_info_tag = run.data.tags[_SPARK_TABLE_INFO_TAG_NAME]
        assert table_info_tag == "\n".join([
            _get_expected_table_info_row(path, data_format)
            for data_format, path in format_to_file_path.items()
        ])
示例#21
0
def test_fetch_create_and_log(tmpdir):
    entry_point_name = "entry_point"
    parameters = {
        "method_name": "string",
    }
    entry_point = _project_spec.EntryPoint(entry_point_name, parameters,
                                           "run_model.sh")
    mock_fetched_project = _project_spec.Project(
        env_type="local",
        env_config_path=None,
        entry_points={entry_point_name: entry_point},
        docker_env=None,
        name="my_project",
    )
    experiment_id = mlflow.create_experiment("test_fetch_project")
    expected_dir = tmpdir
    project_uri = "http://someuri/myproject.git"
    user_param = {"method_name": "newton"}
    with mock.patch("mlflow.projects.utils._fetch_project",
                    return_value=expected_dir):
        with mock.patch("mlflow.projects._project_spec.load_project",
                        return_value=mock_fetched_project):
            work_dir = fetch_and_validate_project("", "", entry_point_name,
                                                  user_param)
            project = load_project(work_dir)
            assert mock_fetched_project == project
            assert expected_dir == work_dir
            # Create a run
            active_run = get_or_create_run(
                run_id=None,
                uri=project_uri,
                experiment_id=experiment_id,
                work_dir=work_dir,
                version=None,
                entry_point=entry_point_name,
                parameters=user_param,
            )

            # check tags
            run = mlflow.get_run(active_run.info.run_id)
            assert MLFLOW_PROJECT_ENTRY_POINT in run.data.tags
            assert MLFLOW_SOURCE_NAME in run.data.tags
            assert entry_point_name == run.data.tags[
                MLFLOW_PROJECT_ENTRY_POINT]
            assert project_uri == run.data.tags[MLFLOW_SOURCE_NAME]
            assert user_param == run.data.params
示例#22
0
def test_autologging_multiple_runs_same_data(spark_session,
                                             format_to_file_path):
    mlflow.spark.autolog()
    data_format = list(format_to_file_path.keys())[0]
    file_path = format_to_file_path[data_format]
    df = (spark_session.read.format(data_format).option(
        "header", "true").option("inferSchema", "true").load(file_path))
    df.collect()

    for _ in range(2):
        with mlflow.start_run():
            time.sleep(1)
            run_id = mlflow.active_run().info.run_id
            run = mlflow.get_run(run_id)
            _assert_spark_data_logged(run=run,
                                      path=file_path,
                                      data_format=data_format)
示例#23
0
def get_mlflow_logger(output_dir=None,
                      checkpoint_dir=None,
                      mlflow_enable=True):
    if mlflow_enable:
        mlflow_logger = MLflowLogger()
        active_run = mlflow.active_run()
        active_run = mlflow.get_run(active_run.info.run_id)
        if output_dir is not None:
            run_fname = os.path.join(output_dir, RUN_FNAME)
            with open(run_fname, 'w') as f:
                yaml.dump(active_run.to_dictionary(), f)
        if checkpoint_dir is not None and output_dir != checkpoint_dir:
            run_fname = os.path.join(checkpoint_dir, RUN_FNAME)
            with open(run_fname, 'w') as f:
                yaml.dump(active_run.to_dictionary(), f)
        return mlflow_logger
    else:
        return None
示例#24
0
def test_mlflow_methods(url, project, model, version, mock_oauth,
                        use_google_oauth):
    _mock_get_project_call(project)
    _mock_get_model_call(project, model)
    _mock_new_model_version_call(model, version)

    merlin.set_url(url, use_google_oauth=use_google_oauth)
    merlin.set_project(project.name)
    merlin.set_model(model.name, model.type)
    with merlin.new_model_version() as v:
        merlin.log_metric("metric", 0.1)
        merlin.log_param("param", "value")
        merlin.set_tag("tag", "value")
    run_id = v.mlflow_run_id
    run = mlflow.get_run(run_id=run_id)

    assert run.data.metrics["metric"] == 0.1
    assert run.data.params["param"] == "value"
    assert run.data.tags["tag"] == "value"
示例#25
0
def get_current_config(default=None):
    """
    Get configuration defined in the current mlflow run
    :return:
    """
    global configs
    active_run = mlflow.active_run()
    if active_run in configs.keys():
        return configs[active_run]
    if not active_run:
        pads = get_current_pads()
        if pads.config:
            return pads.config
        else:
            return default
    run = mlflow.get_run(active_run.info.run_id)
    if CONFIG_NAME in run.data.tags:
        configs[active_run] = ast.literal_eval(run.data.tags[CONFIG_NAME])
        return configs[active_run]
    return default
示例#26
0
def run_logging_operations():
    with mlflow.start_run() as run:
        mlflow.log_param("p", "param")
        mlflow.log_metric("m", 1.0)
        mlflow.set_tag("t", "tag")
        mlflow.pyfunc.log_model(
            artifact_path="model",
            python_model=MockModel(),
            registered_model_name="mock",
        )
    runs = mlflow.search_runs(experiment_ids=["0"],
                              order_by=["param.start_time DESC"])

    run = mlflow.get_run(runs["run_id"][0])

    # Ensure the following migration scripts work correctly:
    # - cfd24bdc0731_update_run_status_constraint_with_killed.py
    # - 0a8213491aaa_drop_duplicate_killed_constraint.py
    client = mlflow.tracking.MlflowClient()
    client.set_terminated(run_id=run.info.run_id, status="KILLED")
示例#27
0
def test_execute_solid_with_mlflow_resource():
    run_id_holder = {}

    params = {"learning_rate": "0.01", "n_estimators": "10"}
    extra_tags = {"super": "experiment"}

    @solid(required_resource_keys={"mlflow"})
    def solid1(_):
        mlflow.log_params(params)
        run_id_holder["solid1_run_id"] = mlflow.active_run().info.run_id

    @solid(required_resource_keys={"mlflow"})
    def solid2(_, _arg1):
        run_id_holder["solid2_run_id"] = mlflow.active_run().info.run_id

    @pipeline(
        mode_defs=[ModeDefinition(resource_defs={"mlflow": mlflow_tracking})])
    def mlf_pipeline():
        solid2(solid1())

    result = execute_pipeline(
        mlf_pipeline,
        run_config={
            "resources": {
                "mlflow": {
                    "config": {
                        "experiment_name": "my_experiment",
                        "extra_tags": extra_tags,
                    }
                }
            }
        },
    )
    assert result.success

    assert run_id_holder["solid1_run_id"] == run_id_holder["solid2_run_id"]
    run = mlflow.get_run(run_id_holder["solid1_run_id"])
    assert run.data.params == params
    assert set(extra_tags.items()).issubset(run.data.tags.items())

    assert mlflow.get_experiment_by_name("my_experiment")
示例#28
0
def get_latest_run(experiment_id, tags=None, status="FINISHED", custom_query=None):
    """Get the latest MLFLow run that matched the parameters.

    Params:
        tags: dictionary of tagname, value pairs. Note that a run without a supplied tag will not get matched in any case.
        custom_query: string to be added to query in addition to tag and status clauses
    """
    query = f"attributes.status = '{status}'"
    if tags is not None:
        tags_query = [f"tags.`{key}` =  '{value}'" for key, value in tags.items()]
        tags_query = " and ".join(tags_query)
        query = f"{query} and {tags_query}"
    if custom_query is not None:
        query = f"{query} and {custom_query}"
    latest_run = mlflow.get_run(
        mlflow.search_runs(experiment_ids=[experiment_id],
                           run_view_type=ViewType.ACTIVE_ONLY,
                           filter_string=query,
                           max_results=1).loc[0].run_id
    )
    return latest_run
示例#29
0
def load_artifacts(
        run_id: str,
        device: torch.device = torch.device("cpu"),
) -> Dict:
    """Load artifacts for a particular `run_id`.

    Args:
        run_id (str): ID of the run to load model artifacts from.
        device (torch.device): Device to run model on. Defaults to CPU.

    Returns:
        Artifacts needed for inference.
    """
    # Load model
    client = mlflow.tracking.MlflowClient()
    device = torch.device("cpu")
    with tempfile.TemporaryDirectory() as fp:
        client.download_artifacts(run_id=run_id, path="", dst_path=fp)
        label_encoder = data.LabelEncoder.load(
            fp=Path(fp, "label_encoder.json"))
        tokenizer = data.Tokenizer.load(fp=Path(fp, "tokenizer.json"))
        model_state = torch.load(Path(fp, "model.pt"), map_location=device)
        performance = utils.load_dict(filepath=Path(fp, "performance.json"))

    # Load model
    run = mlflow.get_run(run_id=run_id)
    args = Namespace(**run.data.params)
    model = models.initialize_model(args=args,
                                    vocab_size=len(tokenizer),
                                    num_classes=len(label_encoder))
    model.load_state_dict(model_state)

    return {
        "args": args,
        "label_encoder": label_encoder,
        "tokenizer": tokenizer,
        "model": model,
        "performance": performance,
    }
示例#30
0
def test_autologging_slow_api_requests(spark_session, format_to_file_path):
    import mlflow.utils.rest_utils

    orig = mlflow.utils.rest_utils.http_request

    def _slow_api_req_mock(*args, **kwargs):
        if kwargs.get("method") == "POST":
            print("Sleeping, %s, %s" % (args, kwargs))
            time.sleep(1)
        return orig(*args, **kwargs)

    mlflow.spark.autolog()
    with mlflow.start_run():
        # Mock slow API requests to log Spark datasource information
        with mock.patch(
                "mlflow.utils.rest_utils.http_request") as http_request_mock:
            http_request_mock.side_effect = _slow_api_req_mock
            run_id = mlflow.active_run().info.run_id
            for data_format, file_path in format_to_file_path.items():
                df = (spark_session.read.format(data_format).option(
                    "header", "true").option("inferSchema",
                                             "true").load(file_path))
                df.collect()
        # Sleep a bit prior to ending the run to guarantee that the Python process can pick up on
        # datasource read events (simulate the common case of doing work, e.g. model training,
        # on the DataFrame after reading from it)
        time.sleep(1)

    # Python subscriber threads should pick up the active run at the time they're notified
    # & make API requests against that run, even if those requests are slow.
    time.sleep(5)
    run = mlflow.get_run(run_id)
    assert _SPARK_TABLE_INFO_TAG_NAME in run.data.tags
    table_info_tag = run.data.tags[_SPARK_TABLE_INFO_TAG_NAME]
    assert table_info_tag == "\n".join([
        _get_expected_table_info_row(path, data_format)
        for data_format, path in format_to_file_path.items()
    ])