def __init__(self, n_estimators, learning_rate, min_samples_split, min_impurity, max_depth, regression, debug): self.n_estimators = n_estimators self.learning_rate = learning_rate self.min_samples_split = min_samples_split self.min_impurity = min_impurity self.max_depth = max_depth self.init_estimate = None self.regression = regression self.debug = debug self.multipliers = [] self.bar = progressbar.ProgressBar(widgets=bar_widgets) # Square loss for regression # Log loss for classification self.loss = SquareLoss() if not self.regression: self.loss = CrossEntropy() # Initialize regression trees self.trees = [] for _ in range(n_estimators): tree = RegressionTree(min_samples_split=self.min_samples_split, min_impurity=min_impurity, max_depth=self.max_depth) self.trees.append(tree)
def __init__(self, n_estimators, learning_rate, min_samples_split, min_impurity, max_depth, regression, debug): self.n_estimators = n_estimators self.learning_rate = learning_rate self.min_samples_split = min_samples_split self.min_impurity = min_impurity self.max_depth = max_depth self.init_estimate = None self.regression = regression self.debug = debug self.multipliers = [] # Square loss for regression # Log loss for classification self.loss = SquareLoss(grad_wrt_theta=False) if not self.regression: self.loss = LogisticLoss(grad_wrt_theta=False) # Initialize regression trees self.trees = [] for _ in range(n_estimators): tree = RegressionTree( min_samples_split=self.min_samples_split, min_impurity=min_impurity, max_depth=self.max_depth) self.trees.append(tree)
def __init__(self, n_estimators, learning_rate, min_samples_split, min_impurity, max_depth, regression): self.n_estimators = n_estimators self.learning_rate = learning_rate self.min_samples_split = min_samples_split self.min_impurity = min_impurity self.max_depth = max_depth self.regression = regression # square loss for regression # log loss for classification self.loss = SquareLoss() if not self.regression: self.loss = CrossEntropy() # Initialize regression trees self.trees = [] for _ in range(self.n_estimators): tree = RegressionTree(min_samples_split=self.min_samples_split, min_impurity=self.min_impurity, max_depth=self.max_depth) self.trees.append(tree)