def _calculate_information_gain(self, y, y1, y2): # Calculate information gain p = len(y1) / len(y) entropy = calculate_entropy(y) info_gain = entropy - p * calculate_entropy(y1) - (1 - p) * calculate_entropy(y2) return info_gain
def _calculate_information_gain(self, y, y1, y2): # Calculate information gain p = len(y1) / len(y) entropy = calculate_entropy(y) info_gain = entropy - p * \ calculate_entropy(y1) - (1 - p) * \ calculate_entropy(y2) return info_gain
def _calculate_information_gain(self, y, y1, y2): with pyRAPL.Measurement('Information_gain', output=csv_output): # Calculate information gain p = len(y1) / len(y) entropy = calculate_entropy(y) info_gain = entropy - p * \ calculate_entropy(y1) - (1 - p) * \ calculate_entropy(y2) return info_gain csv_output.save()