point = {0: 'ro', 1: 'bo'} marker = {0: 's', 1: 'D'} # O clasificador da vigesima realização plot_dict = { 'xx': xx, 'yy': yy, 'Z': array(best_acc_clf.predict(space)), 'classes': {} } # utilizando o x_test e o y_test da ultima realização for c in [0, 1]: plot_dict['classes'].update({ c: { 'X': x_test[where(y_test == c)[0]], 'point': point[c], 'marker': marker[c] } }) # #FFAAAA red # #AAAAFF blue coloring(plot_dict, ListedColormap(['#FFAAAA', '#AAAAFF']), xlabel='x1', ylabel='x2', title='mapa de cores com knn', path=path + 'color_map_and_knn.jpg', save=True) print('dataset shape %s' % Counter(base[:, 2]))
# utilizando o x_test e o y_test da ultima realização for c in [0, 1, 2]: plot_dict['classes'].update({ c: { 'X': x[where(y == c)[0]], 'point': point[c], 'marker': marker[c] } }) # #FFAAAA red # #AAAAFF blue coloring(plot_dict, ListedColormap(['#87CEFA', '#228B22', "#FF00FF"]), xlabel='x1', ylabel='x2', title='mapa de cores com Rede Perceptron ', xlim=[-0.1, 1.1], ylim=[-0.1, 1.1], path=get_project_root() + '/run/TR-04/ARTIFICIAL/results/' + 'color_map_triangle_simple_net.jpg', save=True) # print('dataset shape %s' % Counter(base[:, 2])) print(pd.DataFrame(final_result)) # del final_result['best_cf'] pd.DataFrame(final_result).to_csv(get_project_root() + '/run/TR-04/ARTIFICIAL/results/' + 'result_simple_net.csv')
'classes': {} } # utilizando o x_test e o y_test da ultima realização for c in [0, 1]: plot_dict['classes'].update({ c: { 'X': x_test[where(y_test == c)[0]], 'point': point[c], 'marker': marker[c] } }) # #FFAAAA red # #AAAAFF blue coloring(plot_dict, ListedColormap(['#FFAAAA', '#AAAAFF']), xlabel='x1', ylabel='x2', title='mapa de cores com Perceptron sigmoid', path=get_project_root() + '/run/TR-035/ARTIFICIAL/results/' + 'color_map_triangle_sigmoid_hyper_net.jpg', save=True) # print('dataset shape %s' % Counter(base[:, 2])) print(pd.DataFrame(final_result)) # del final_result['best_cf'] pd.DataFrame(final_result).to_csv(get_project_root() + '/run/TR-035/ARTIFICIAL/results/' + 'result_sigmoid_hyper_net.csv')
# utilizando o x_test e o y_test da ultima realização for c in [0, 1]: plot_dict['classes'].update({ c: { 'X': x[where(y == c)[0]], 'point': point[c], 'marker': marker[c] } }) # #FFAAAA red # #AAAAFF blue coloring(plot_dict, ListedColormap(['#87CEFA', '#228B22']), xlabel='x1', ylabel='x2', title='mapa de cores com RBF', xlim=[-0.1, 1.1], ylim=[-0.1, 1.1], path=get_project_root() + '/run/TR-06/XOR/results/' + 'color_map_xor_rbf_net.jpg', save=True) # print('dataset shape %s' % Counter(base[:, 2])) print(pd.DataFrame(final_result)) # del final_result['best_cf'] pd.DataFrame(final_result).to_csv(get_project_root() + '/run/TR-06/XOR/results/' + 'result_rbf.csv')
2: '*' } # O clasificador da vigesima realização plot_dict = { 'xx': xx, 'yy': yy, 'Z': out_of_c_to_label(simple_net.predict(space)), 'classes': {} } # utilizando o x_test e o y_test da ultima realização for c in [0, 1, 2]: plot_dict['classes'].update({ c: { 'X': x[where(y == c)[0]], 'point': point[c], 'marker': marker[c] } }) # #FFAAAA red # #AAAAFF blue coloring(plot_dict, ListedColormap(['#87CEFA', '#228B22', "#FF00FF"]), xlabel='SepalLengthCm', ylabel='SepalWidthCm', title='mapa de cores com Rede Perceptron', xlim=[-0.1, 1.1], ylim=[-0.1, 1.1], path=get_project_root() + '/run/TR-03/IRIS/results/' + 'color_map_sepal.jpg', save=True) # print('dataset shape %s' % Counter(base[:, 2]))
} marker = { 0: '^', 1: 'o', } # O clasificador da vigesima realização plot_dict = { 'xx': xx, 'yy': yy, 'Z': classifier_perceptron.predict(space), 'classes': {} } # utilizando o x_test e o y_test da ultima realização for c in [0, 1]: plot_dict['classes'].update({ c: { 'X': x[where(y == c)[0]], 'point': point[c], 'marker': marker[c] } }) path = get_project_root() + '/run/TR-035/IRIS/results/' + 'color_map_' + str(combination) + str(one_versus_others) + '.jpg' coloring(plot_dict, ListedColormap(['#87CEFA', '#228B22']), xlabel=combination[0], ylabel=combination[1], title='mapa de cores com Rede Perceptron' + str(one_versus_others), xlim=[-0.1, 1.1], ylim=[-0.1, 1.1], path=path, save=True)
} # utilizando o x_test e o y_test da ultima realização for c in [0, 1, 2]: plot_dict['classes'].update({ c: { 'X': x[where(y == c)[0]], 'point': point[c], 'marker': marker[c] } }) # #FFAAAA red # #AAAAFF blue coloring(plot_dict, ListedColormap(['#87CEFA', '#228B22', "#FF00FF"]), xlabel='SepalLengthCm', ylabel='SepalWidthCm', title='mapa de cores com Rede Perceptron - ACC: ' + str(metric_results['ACCURACY'].round(2)), xlim=[-0.1, 1.1], ylim=[-0.1, 1.1], path=get_project_root() + '/run/TR-04/IRIS/results/' + 'color_map_sepal_test.jpg', save=True) # print('dataset shape %s' % Counter(base[:, 2])) # ------------------ All points ------------------------------------------------------------------- x = array(base[:, :2]) y = array(out_of_c_to_label(base[:, 2:])) xx, yy = generate_space(x) space = c_[xx.ravel(), yy.ravel()] point = { 0: 'bo', 1: 'go',
'classes': {} } # utilizando o x_test e o y_test da ultima realização for c in [0, 1]: plot_dict['classes'].update({ c: { 'X': x_test[where(y_test == c)[0]], 'point': point[c], 'marker': marker[c] } }) # #FFAAAA red # #AAAAFF blue coloring(plot_dict, ListedColormap(['#FFAAAA', '#AAAAFF']), xlabel='x1', ylabel='x2', title='mapa de cores com perceptron', path=get_project_root() + '/run/TR-01/ARTIFICIAL/results/' + 'color_map_and_percptron.jpg', save=True) print('dataset shape %s' % Counter(base[:, 2])) del final_result['best_cf'] del final_result['ErrosxEpocohs'] DataFrame(final_result).to_csv(get_project_root() + '/run/TR-01/ARTIFICIAL/results/' + 'result_percptron.csv')