def test_make_classification(self): X, y = make_classification(random_state=42) pipe = PipelineCache([('pca', PCA(2)), ('lr', LogisticRegression())], 'cache__') pipe.fit(X, y) cache = MLCache.get_cache('cache__') self.assertEqual(len(cache), 1) key = list(cache.keys())[0] self.assertIn("[('X',", key) self.assertIn("('copy', 'True')", key) MLCache.remove_cache('cache__')
def test_make_classification(self): X, y = make_classification(random_state=42) pipe0 = Pipeline([('pca', PCA(2)), ('lr', LogisticRegression())]) pipe = PipelineCache([('pca', PCA(2)), ('lr', LogisticRegression())], 'cache__') if hasattr(pipe0, '_check_fit_params'): pars0 = pipe0._check_fit_params() # pylint: disable=W0212,E1101 pars1 = pipe._check_fit_params() # pylint: disable=W0212,E1101 self.assertEqual(pars0, pars1) pipe0.fit(X, y) pipe.fit(X, y) cache = MLCache.get_cache('cache__') self.assertEqual(len(cache), 1) key = list(cache.keys())[0] self.assertIn("[('X',", key) self.assertIn("('copy', 'True')", key) MLCache.remove_cache('cache__')