def test_classification_kmeans_intercept_weights(self): iris = datasets.load_iris() X, y = iris.data, iris.target clr = ClassifierAfterKMeans() clr.fit(X, y, sample_weight=numpy.ones((X.shape[0], ))) acc = clr.score(X, y) self.assertGreater(acc, 0)
def test_classification_kmeans(self): iris = datasets.load_iris() X, y = iris.data, iris.target clr = ClassifierAfterKMeans() clr.fit(X, y) acc = clr.score(X, y) self.assertGreater(acc, 0) prob = clr.predict_proba(X) self.assertEqual(prob.shape[1], 3) dec = clr.decision_function(X) self.assertEqual(prob.shape, dec.shape)
def test_classification_kmeans_intercept_weights(self): iris = datasets.load_iris() X, y = iris.data, iris.target clr = ClassifierAfterKMeans() try: clr.fit(X, y, sample_weight=numpy.ones((X.shape[0], ))) except AttributeError as e: if compare_module_version(sklver, "0.24") < 0: return raise e acc = clr.score(X, y) self.assertGreater(acc, 0)
def test_classification_kmeans(self): iris = datasets.load_iris() X, y = iris.data, iris.target clr = ClassifierAfterKMeans() try: clr.fit(X, y) except AttributeError as e: if compare_module_version(sklver, "0.24") < 0: return raise e acc = clr.score(X, y) self.assertGreater(acc, 0) prob = clr.predict_proba(X) self.assertEqual(prob.shape[1], 3) dec = clr.decision_function(X) self.assertEqual(prob.shape, dec.shape)
def test_classification_kmeans_relevance(self): state = RandomState(seed=0) Xs = [] Ys = [] n = 20 for i in range(0, 5): for j in range(0, 4): x1 = state.rand(n) + i * 1.1 x2 = state.rand(n) + j * 1.1 Xs.append(numpy.vstack([x1, x2]).T) cl = state.randint(0, 4) Ys.extend([cl for i in range(n)]) X = numpy.vstack(Xs) Y = numpy.array(Ys) clk = ClassifierAfterKMeans(c_n_clusters=6, c_random_state=state) clk.fit(X, Y) score = clk.score(X, Y) self.assertGreater(score, 0.95)
def test_classification_kmeans_relevance(self): state = RandomState(seed=0) Xs = [] Ys = [] n = 20 for i in range(0, 5): for j in range(0, 4): x1 = state.rand(n) + i * 1.1 x2 = state.rand(n) + j * 1.1 Xs.append(numpy.vstack([x1, x2]).T) cl = state.randint(0, 4) Ys.extend([cl for i in range(n)]) X = numpy.vstack(Xs) Y = numpy.array(Ys) clk = ClassifierAfterKMeans(c_n_clusters=6, c_random_state=state) try: clk.fit(X, Y) except AttributeError as e: if compare_module_version(sklver, "0.24") < 0: return raise e score = clk.score(X, Y) self.assertGreater(score, 0.95)