示例#1
0
    def GetOptimizerConvergenceState(self, request, context):
        with self.exclusive_optimizer(optimizer_id=request.Id) as optimizer:
            serialized_convergence_state = serialize_to_bytes_string(
                optimizer.get_optimizer_convergence_state())

        return OptimizerConvergenceState(
            OptimizerHandle=OptimizerHandle(Id=request.Id),
            SerializedOptimizerConvergenceState=serialized_convergence_state)
示例#2
0
 def GetOptimizerInfo(self, request: OptimizerHandle, context):
     # TODO: Learn about and leverage gRPC's error handling model for a case
     # TODO: when the handle is invalid.
     optimizer = self._optimizers_by_id[request.Id]
     return OptimizerInfo(
         OptimizerHandle=OptimizerHandle(Id=request.Id),
         OptimizerConfigJsonString=optimizer.optimizer_config.to_json(),
         OptimizationProblem=optimizer.optimization_problem.to_protobuf())
示例#3
0
 def GetOptimizerInfo(self, request: OptimizerHandle, context):
     # TODO: Learn about and leverage gRPC's error handling model for a case
     # TODO: when the handle is invalid.
     optimizer_id = request.Id
     optimizer = self._bayesian_optimizer_store.get_optimizer(optimizer_id)
     return OptimizerInfo(
         OptimizerHandle=OptimizerHandle(Id=request.Id),
         OptimizerConfigJsonString=optimizer.optimizer_config.to_json(),
         OptimizationProblem=OptimizerServiceEncoder.
         encode_optimization_problem(optimizer.optimization_problem))
示例#4
0
    def get_optimizer_by_id(self, optimizer_id):
        """Returns a proxy to an optimizer with a specified Id.

        :param optimizer_id:
        :return:
        """
        optimizer_handle = OptimizerHandle(Id=optimizer_id)
        optimizer_info = self._optimizer_service_stub.GetOptimizerInfo(optimizer_handle)
        optimizer_proxy = self._optimizer_factory.connect_to_existing_remote_optimizer(optimizer_info)
        return optimizer_proxy
示例#5
0
 def ListExistingOptimizers(self, request: Empty, context):
     optimizers_info = []
     for optimizer_id in self._ordered_ids:
         optimizer = self._optimizers_by_id[optimizer_id]
         optimizers_info.append(OptimizerInfo(
             OptimizerHandle=OptimizerHandle(Id=optimizer_id),
             OptimizerConfigJsonString=optimizer.optimizer_config.to_json(),
             OptimizationProblem=optimizer.optimization_problem.to_protobuf()
         ))
     return OptimizerList(Optimizers=optimizers_info)
示例#6
0
    def CreateOptimizer(self, request: CreateOptimizerRequest, context):  # pylint: disable=unused-argument
        self.logger.info("Creating Optimizer")
        optimization_problem = OptimizerServiceDecoder.decode_optimization_problem(
            optimization_problem_pb2=request.OptimizationProblem)
        optimizer_config_json = request.OptimizerConfig
        if optimizer_config_json is not None and len(
                optimizer_config_json) > 0:
            optimizer_config = Point.from_json(optimizer_config_json)
        else:
            optimizer_config = bayesian_optimizer_config_store.default

        optimizer = BayesianOptimizer(
            optimization_problem=optimization_problem,
            optimizer_config=optimizer_config)

        optimizer_id = self._bayesian_optimizer_store.get_next_optimizer_id()
        self._bayesian_optimizer_store.add_optimizer(optimizer_id=optimizer_id,
                                                     optimizer=optimizer)

        self.logger.info(
            f"Created optimizer {optimizer_id} with config: {optimizer.optimizer_config.to_json(indent=2)}"
        )
        return OptimizerHandle(Id=optimizer_id)