示例#1
0
 def test_transform_dataframe(self):
     x = pandas.DataFrame(data=[[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])
     x.columns = "X1 X2".split()
     content = self.get_onnx_mul()
     tr = OnnxTransformer(content)
     tr.fit()
     try:
         tr.transform(x)
     except RuntimeError:
         pass
 def test_pipeline_iris_change_dim(self):
     iris = load_iris()
     X, y = iris.data, iris.target
     pipe = make_pipeline(PCA(n_components=2), LogisticRegression())
     pipe.fit(X, y)
     onx = convert_sklearn(pipe, initial_types=[
                           ('input', FloatTensorType((None, X.shape[1])))])
     tr = OnnxTransformer(onx, change_batch_size=2,
                          runtime='onnxruntime1')
     tr.fit(X)
     self.assertRaise(lambda: tr.transform(X), OrtInvalidArgument)
     y = tr.transform(X[:2])
     self.assertEqual(len(y.shape), 2)
     self.assertEqual(y.shape[0], 2)
示例#3
0
 def test_transform_dict(self):
     x = {'X': np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]])}
     content = self.get_onnx_mul()
     tr = OnnxTransformer(content)
     tr.fit()
     res = tr.transform(x)
     exp = np.array([[1., 4.], [9., 16.], [25., 36.]], dtype=np.float32)
     self.assertEqual(list(res.ravel()), list(exp.ravel()))
示例#4
0
    def test_transform_numpy(self):
        x = np.array([[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]], dtype=np.float32)
        content = self.get_onnx_mul()

        tr = OnnxTransformer(content)
        tr.fit()
        res = tr.transform(x)
        exp = np.array([[1., 4.], [9., 16.], [25., 36.]], dtype=np.float32)
        self.assertEqual(list(res.ravel()), list(exp.ravel()))
        rp = repr(tr)
        self.assertStartsWith("OnnxTransformer(onnx_bytes=b'\\", rp)
        self.assertEndsWith("')", rp)
 def test_pipeline_iris_intermediate(self):
     iris = load_iris()
     X, y = iris.data, iris.target
     pipe = make_pipeline(PCA(n_components=2), LogisticRegression())
     pipe.fit(X, y)
     onx = convert_sklearn(pipe, initial_types=[
                           ('input', FloatTensorType((None, X.shape[1])))])
     tr = OnnxTransformer(onx, output_name="probabilities", reshape=True)
     tr.fit(X)
     y = tr.transform(X[:2])
     self.assertEqual(len(y.shape), 2)
     self.assertEqual(y.shape[0], 2)
    def test_grid_search(self):
        iris = load_iris()
        X, y = iris.data, iris.target
        X_train, X_test, y_train, y_test = train_test_split(X, y)

        pca = PCA(n_components=2)
        pca.fit(X_train)
        onx = convert_sklearn(pca,
                              initial_types=[('input',
                                              FloatTensorType(
                                                  (1, X.shape[1])))])
        onx_bytes = onx.SerializeToString()
        tr = OnnxTransformer(onx_bytes)

        pipe = make_pipeline(tr, LogisticRegression(solver='liblinear'))

        param_grid = [{'logisticregression__penalty': ['l2', 'l1']}]

        clf = GridSearchCV(pipe, param_grid, cv=3)
        clf.fit(X_train, y_train)
        bp = clf.best_params_
        self.assertIn(bp, ({
            'logisticregression__penalty': 'l1'
        }, {
            'logisticregression__penalty': 'l2'
        }))

        tr2 = OnnxTransformer(onx_bytes)
        tr2.fit()
        self.assertEqualArray(
            tr2.transform(X_test),
            clf.best_estimator_.steps[0][1].transform(X_test))
        y_true, y_pred = y_test, clf.predict(X_test)
        cl = classification_report(y_true, y_pred)
        self.assertIn('precision', cl)
        sc = clf.score(X_test, y_test)
        self.assertGreater(sc, 0.70)