示例#1
0
    def setup_method(self, _):
        from mlpy.mdp.stateaction import State, Action
        State.nfeatures = None
        Action.description = None
        Action.nfeatures = None

        case_template = {
            "state": {
                "type": "float",
                "value": "data.state",
                "is_index": True,
                "retrieval_method": "knn",
                "retrieval_method_params": 5
            },
            "act": {
                "type": "float",
                "value": "data.action",
                "is_index": False,
                "retrieval_method": "cosine",
            },
            "delta_state": {
                "type": "float",
                "value": "data.next_state - data.state",
                "is_index": False,
            }
        }

        from mlpy.knowledgerep.cbr.engine import CaseBase
        self.cb = CaseBase(case_template, retention_method_params={'max_error': 1e-5})

        from mlpy.auxiliary.io import load_from_file
        self.data = load_from_file(os.path.join(os.getcwd(), 'tests', 'data/jointsAndActionsData.pkl'))
def main(args):
    try:
        data = load_from_file(args.infile)
        obs = data["state"]
    except IOError:
        sys.exit(sys.exc_info()[1])
    except KeyError, e:
        sys.exit("Key not found: {0}".format(e))
def main(args):
    try:
        filename = convert_to_policy(args.policies)
        # noinspection PyUnusedLocal
        data = load_from_file(filename)
        if ":" not in args.policy_num:
            args.policy_num = args.policy_num + ":" + str(int(args.policy_num) + 1)
        policies = eval("data['act'][" + str(args.policy_num) + "]")
    except IOError:
        sys.exit(sys.exc_info()[1])
    except KeyError, e:
        sys.exit("Key not found: {0}".format(e))
def main(args):
    try:
        data = load_from_file(args.infile)
        train = data["train"]
        test = data["test"]

        obs_avg = calc_stats(test)

        nobs = 20  # train[0].shape[0]
        d, n = train[0][0].shape
    except IOError:
        sys.exit(sys.exc_info()[1])
    except KeyError, e:
        sys.exit("Key not found: {0}".format(e))
示例#5
0
    def setup_method(self, _):
        from mlpy.mdp.stateaction import State, Action
        State.nfeatures = None
        Action.description = None
        Action.nfeatures = None

        case_template = {
            "state": {
                "type": "float",
                "value": "data.state",
                "is_index": True,
                "retrieval_method": "knn",
                "retrieval_method_params": 5
            },
            "act": {
                "type": "float",
                "value": "data.action",
                "is_index": False,
                "retrieval_method": "cosine",
            },
            "delta_state": {
                "type": "float",
                "value": "data.next_state - data.state",
                "is_index": False,
            }
        }

        from mlpy.mdp.continuous.casml import CASML
        self.model = CASML(case_template, tau=1e-5, sigma=1e-5, ncomponents=2)

        from mlpy.auxiliary.io import load_from_file
        data = load_from_file(os.path.join(os.getcwd(), 'tests', 'data/jointsAndActionsData.pkl'))

        # Extract 10th experience for testing
        self.unseen_state = data["states"][0][:, 10]
        self.unseen_action = data["actions"][0][:, 10]
        self.model.fit(np.delete(data["states"][0], 10, 1), np.delete(data["actions"][0], 10, 1))
    try:
        data = load_from_file(args.infile)
        train = data["train"]
        test = data["test"]

        obs_avg = calc_stats(test)

        nobs = 20  # train[0].shape[0]
        d, n = train[0][0].shape
    except IOError:
        sys.exit(sys.exc_info()[1])
    except KeyError, e:
        sys.exit("Key not found: {0}".format(e))

    try:
        data = load_from_file(args.policy)
        actions = data["act"][args.policy_num]
    except IOError:
        sys.exit(sys.exc_info()[1])
    except KeyError, e:
        sys.exit("Key not found: {0}".format(e))

    ntrials = 20

    fig1 = None
    fig2 = None
    ax1 = None
    ax2 = None
    ax3 = None
    ax4 = None
示例#7
0
    def test_agentmodule_creation(self):
        from mlpy.agents.modules import AgentModuleFactory

        # create follow policy module
        with pytest.raises(TypeError):
            AgentModuleFactory().create('followpolicymodule')

        from mlpy.auxiliary.io import load_from_file
        data = load_from_file(
            os.path.join(os.getcwd(), 'tests', 'data/policies.pkl'))
        with pytest.raises(AttributeError):
            AgentModuleFactory().create('followpolicymodule', data)

        AgentModuleFactory().create('followpolicymodule', data['act'][0:2])

        # create learning module
        with pytest.raises(TypeError):
            AgentModuleFactory().create('learningmodule')

        from mlpy.mdp.stateaction import Action
        Action.set_description({
            'out': {
                'value': [-0.004]
            },
            'in': {
                'value': [0.004]
            },
            'kick': {
                'value': [-1.0]
            }
        })

        # create `qlearner` learning module
        AgentModuleFactory().create('learningmodule', 'qlearner', max_steps=10)
        AgentModuleFactory().create('learningmodule',
                                    'qlearner',
                                    lambda s, a: 1.0,
                                    max_steps=10)

        with pytest.raises(ValueError):
            AgentModuleFactory().create('learningmodule',
                                        'qlearner',
                                        1.0,
                                        max_steps=10)

        # create `rldtlearner` learner module
        from mlpy.mdp.discrete import DiscreteModel
        from mlpy.planners.discrete import ValueIteration
        planner = ValueIteration(DiscreteModel(['out', 'in', 'kick']))

        AgentModuleFactory().create('learningmodule',
                                    'rldtlearner',
                                    None,
                                    planner,
                                    max_steps=10)
        AgentModuleFactory().create('learningmodule',
                                    'rldtlearner',
                                    planner=planner,
                                    max_steps=10)

        with pytest.raises(TypeError):
            AgentModuleFactory().create('learningmodule',
                                        'rldtlearner',
                                        max_step=10)
示例#8
0
    explorer = None
    if args.explorer_type in ["egreedyexplorer", "softmaxexplorer"]:
        explorer = ExplorerFactory.create(args.explorer_type, args.explorer_params, args.decay)

    if args.learner == "apprenticeshiplearner":
        learner = None
        if args.progress:
            try:
                learner = ApprenticeshipLearner.load(args.savefile)
            except IOError:
                pass

        if not learner:
            try:
                data = load_from_file(args.infile)
                obs = data["state"]
                actions = data["act"]
                labels = data["label"]
            except IOError:
                sys.exit(sys.exc_info()[1])
            except KeyError, e:
                sys.exit("Key not found: {0}".format(e))

            # Train the model with empirical data
            for i, (s, a, l) in enumerate(zip(obs, actions, labels)):
                model.fit(s, a, l[0])
            # model.print_transitions()

            learner = ApprenticeshipLearner(
                np.asarray(demo),