"type": "float", "value": "data.state", "is_index": True, "retrieval_method": "radius-n", "retrieval_method_params": param, }, "act": {"type": "float", "value": "data.action", "is_index": False, "retrieval_method": "cosine"}, "delta_state": {"type": "float", "value": "data.next_state - data.state", "is_index": False}, } model = CASML( CbTData( case_t_template, rho=args.rho, tau=args.tau, sigma=args.sigma, plot_reuse=False, plot_reuse_params="original_origin", ), ncomponents=args.ncomponents, ) with Timer() as tm: for j, states in enumerate(train[i]): # Train CASML's case base and hmm with states and actions model.fit(states, actions) print ("Model trained in %.03f sec." % tm.time) failed = 0 sampled = np.zeros((ntrials, d, n)) ncases = model._cb_t._counter - 1
"retrieval_method": args.retrieval_method, "retrieval_method_params": args.retrieval_method_params }, "act": { "type": "float", "value": "data.action", "is_index": False, "retrieval_method": "cosine", }, "delta_state": { "type": "float", "value": "data.next_state - data.state", "is_index": False, } } model = CASML(CbTData(case_t_template, rho=args.rho, tau=args.tau, sigma=args.sigma), ncomponents=args.ncomponents) n = obs.shape[0] action_error = -np.inf * np.ones(n) delta_error = -np.inf * np.ones(n) for i, states in enumerate(obs): # Train CASML's case base and hmm with states and actions model.fit(states, actions) # Test model cntr = 0 iter_ = 0 while cntr < 10: sampled = None try: