def KRR(): np.random.seed(10) targetValues = np.genfromtxt("F:\PY\data\stock.txt", skip_header=1, dtype=None, delimiter="\t", usecols=(1)) mse = {} for i in range(20, 50): trainingPoints = np.arange(i - 1).reshape(-1, 1) testPoints = np.arange(i).reshape(-1, 1) # training kernel matrix knl = mlpy.kernel_gaussian(trainingPoints, trainingPoints, sigma=1) # testing kernel matrix knlTest = mlpy.kernel_gaussian(testPoints, trainingPoints, sigma=1) knlRidge = KernelRidge(lmb=0.01, kernel=None) err = 0 for j in range(1, 6): knlRidge.learn(knl, targetValues[-(i + j - 1) : -j]) resultPoints = knlRidge.pred(knlTest) err += (resultPoints[-1] - targetValues[-j]) ** 2 print i, resultPoints[-1], targetValues[-j] mse[i] = square(err / 5) print mse[i] sortedMse = sorted(mse.iteritems(), key=operator.itemgetter(1), reverse=False) print sortedMse[0]
def KRRTest(): np.random.seed(10) targetValues = np.genfromtxt('F:\PY\data\stock.txt', skip_header=1, dtype=None, delimiter='\t', usecols=(1)) trainingPoints = np.arange(46).reshape(-1, 1) testPoints = np.arange(47).reshape(-1, 1) #training kernel matrix knl = mlpy.kernel_gaussian(trainingPoints, trainingPoints, sigma=1) #testing kernel matrix knlTest = mlpy.kernel_gaussian(testPoints, trainingPoints, sigma=1) knlRidge = KernelRidge(lmb=0.01, kernel=None) knlRidge.learn(knl, targetValues[-46:]) resultPoints = knlRidge.pred(knlTest) print targetValues.size, resultPoints fig = plt.figure(1) plot1 = plt.plot(trainingPoints, targetValues[-46:], 'o') plot2 = plt.plot(testPoints, resultPoints) plt.show()
def KRR(): np.random.seed(10) targetValues = np.genfromtxt('F:\PY\data\stock.txt', skip_header=1, dtype=None, delimiter='\t', usecols=(1)) mse = {} for i in range(20, 50): trainingPoints = np.arange(i - 1).reshape(-1, 1) testPoints = np.arange(i).reshape(-1, 1) #training kernel matrix knl = mlpy.kernel_gaussian(trainingPoints, trainingPoints, sigma=1) #testing kernel matrix knlTest = mlpy.kernel_gaussian(testPoints, trainingPoints, sigma=1) knlRidge = KernelRidge(lmb=0.01, kernel=None) err = 0 for j in range(1, 6): knlRidge.learn(knl, targetValues[-(i + j - 1):-j]) resultPoints = knlRidge.pred(knlTest) err += (resultPoints[-1] - targetValues[-j])**2 print i, resultPoints[-1], targetValues[-j] mse[i] = square(err / 5) print mse[i] sortedMse = sorted(mse.iteritems(), key=operator.itemgetter(1), reverse=False) print sortedMse[0]
def KRR(): np.random.seed(10) targetValues = np.genfromtxt('F:\PY\data\Gold.csv', skip_header=1, dtype=None, delimiter=',', usecols=(1)) trainingPoints = np.arange(125).reshape(-1, 1) testPoints = np.arange(126).reshape(-1, 1) #training kernel matrix knl = mlpy.kernel_gaussian(trainingPoints, trainingPoints, sigma=1) #testing kernel matrix knlTest = mlpy.kernel_gaussian(testPoints, trainingPoints, sigma=1) knlRidge = KernelRidge(lmb=0.01, kernel=None) knlRidge.learn(knl, targetValues) resultPoints = knlRidge.pred(knlTest) print(resultPoints) fig = plt.figure(1) plot1 = plt.plot(trainingPoints, targetValues, 'o') plot2 = plt.plot(testPoints, resultPoints) plt.show()
def KRRProTy(): np.random.seed(10) targetValues = np.genfromtxt("F:\PY\data\stockPT.txt", skip_header=1, dtype=None, delimiter="\t", usecols=(1)) trainingPoints = np.arange(targetValues.size).reshape(-1, 1) testPoints = np.arange(targetValues.size + 1).reshape(-1, 1) # training kernel matrix knl = mlpy.kernel_gaussian(trainingPoints, trainingPoints, sigma=1) # testing kernel matrix knlTest = mlpy.kernel_gaussian(testPoints, trainingPoints, sigma=1) knlRidge = KernelRidge(lmb=0.01, kernel=None) knlRidge.learn(knl, targetValues) resultPoints = knlRidge.pred(knlTest) print targetValues.size, resultPoints fig = plt.figure(1) plot1 = plt.plot(trainingPoints, targetValues, "o") plot2 = plt.plot(testPoints, resultPoints) plt.show()
from mlpy import KernelRidge import matplotlib.pyplot as plt np.random.seed(10) targetValues = np.genfromtxt("Gold.csv", skip_header=1, dtype=None, delimiter=',', usecols=(1)) trainingPoints = np.arange(125).reshape(-1, 1) testPoints = np.arange(126).reshape(-1, 1) #training kernel matrix knl = mlpy.kernel_gaussian(trainingPoints, trainingPoints, sigma=1) #testing kernel matrix knlTest = mlpy.kernel_gaussian(testPoints, trainingPoints, sigma=1) knlRidge = KernelRidge(lmb=0.01, kernel=None) knlRidge.learn(knl, targetValues) resultPoints = knlRidge.pred(knlTest) print(resultPoints) fig = plt.figure(1) plot1 = plt.plot(trainingPoints, targetValues, 'o') plot2 = plt.plot(testPoints, resultPoints) plt.show()