示例#1
0
   def bprop(self,target):
       """
       Computes the loss derivatives with respect to all parameters
       times the current learning rate.  It assumes that
       ``self.fprop(input)`` was called first. All the derivatives are
       put in their corresponding object attributes (i.e. ``self.d*``).
       """
       self.doutput_act[:] = self.output
       self.doutput_act[target] -= 1
       self.doutput_act *= self.learning_rate/(1.+self.decrease_constant*self.n_updates)
 
       self.dd[:] = self.doutput_act
       for k in range(self.n_k_means):
           c = self.cluster_indices[k]
           idx = c + k*self.n_clusters
 
           mllin.outer(self.doutput_act,self.layers[k],self.dVs[idx])
           mllin.product_matrix_vector(self.Vs[idx].T,self.doutput_act,self.dlayers[k])
           #mlnonlin.dsigmoid(self.layers[k],self.dlayers[k],self.dlayer_acts[k])
           if self.activation_function == 'sigmoid':
               mlnonlin.dsigmoid(self.layers[k],self.dlayers[k],self.dlayer_acts[k])
           elif self.activation_function == 'tanh':
               mlnonlin.dtanh(self.layers[k],self.dlayers[k],self.dlayer_acts[k])
           elif self.activation_function == 'reclin':
               mlnonlin.dreclin(self.layers[k],self.dlayers[k],self.dlayer_acts[k])
           else:
               raise ValueError('activation_function must be either \'sigmoid\', \'tanh\' or \'reclin\'')

           self.dcs[idx][:] = self.dlayer_acts[k]
           mllin.outer(self.dlayer_acts[k],self.input,self.dWs[idx])

       if self.autoencoder_regularization != 0:
           self.dae_doutput_act[:] = self.dae_output
           self.dae_doutput_act[:] -= self.input
           self.dae_doutput_act *= 2*self.autoencoder_regularization*self.learning_rate/(1.+self.decrease_constant*self.n_updates)
           
           self.dae_dd[:] = self.dae_doutput_act
           for k in range(self.n_k_means):
               c = self.cluster_indices[k]
               idx = c + k*self.n_clusters
           
               mllin.outer(self.dae_doutput_act,self.dae_layers[k],self.dae_dWsT[idx])
               self.dWs[idx] += self.dae_dWsT[idx].T
               mllin.product_matrix_vector(self.Ws[idx],self.dae_doutput_act,self.dae_dlayers[k])
               #mlnonlin.dsigmoid(self.dae_layers[k],self.dae_dlayers[k],self.dae_dlayer_acts[k])
               if self.activation_function == 'sigmoid':
                   mlnonlin.dsigmoid(self.dae_layers[k],self.dae_dlayers[k],self.dae_dlayer_acts[k])     
               elif self.activation_function == 'tanh':
                   mlnonlin.dtanh(self.dae_layers[k],self.dae_dlayers[k],self.dae_dlayer_acts[k])     
               elif self.activation_function == 'reclin':
                   mlnonlin.dreclin(self.dae_layers[k],self.dae_dlayers[k],self.dae_dlayer_acts[k])     
               else:
                   raise ValueError('activation_function must be either \'sigmoid\', \'tanh\' or \'reclin\'')

               self.dcs[idx] += self.dae_dlayer_acts[k]
               mllin.outer(self.dae_dlayer_acts[k],self.dae_input,self.dae_dWs[idx])
               self.dWs[idx] += self.dae_dWs[idx]               
示例#2
0
   def update_learner(self,example):
      self.layers[0][:] = example[0]

      # fprop
      for h in range(self.n_hidden_layers):
         mllin.product_matrix_vector(self.Ws[h],self.layers[h],self.layer_acts[h+1])
         self.layer_acts[h+1] += self.cs[h]
         if self.activation_function == 'sigmoid':
             mlnonlin.sigmoid(self.layer_acts[h+1],self.layers[h+1])
         elif self.activation_function == 'tanh':
             mlnonlin.tanh(self.layer_acts[h+1],self.layers[h+1])
         elif self.activation_function == 'reclin':
             mlnonlin.reclin(self.layer_acts[h+1],self.layers[h+1])
         else:
             raise ValueError('activation_function must be either \'sigmoid\', \'tanh\' or \'reclin\'')

      mllin.product_matrix_vector(self.U,self.layers[-1],self.output_act)
      self.output_act += self.d
      mlnonlin.softmax(self.output_act,self.output)

      self.doutput_act[:] = self.output
      self.doutput_act[example[1]] -= 1
      self.doutput_act *= self.learning_rate/(1.+self.decrease_constant*self.n_updates)

      self.dd[:] = self.doutput_act
      mllin.outer(self.doutput_act,self.layers[-1],self.dU)      
      mllin.product_matrix_vector(self.U.T,self.doutput_act,self.dlayers[-1])
      if self.activation_function == 'sigmoid':
          mlnonlin.dsigmoid(self.layers[-1],self.dlayers[-1],self.dlayer_acts[-1])
      elif self.activation_function == 'tanh':
          mlnonlin.dtanh(self.layers[-1],self.dlayers[-1],self.dlayer_acts[-1])
      elif self.activation_function == 'reclin':
          mlnonlin.dreclin(self.layers[-1],self.dlayers[-1],self.dlayer_acts[-1])
      else:
          raise ValueError('activation_function must be either \'sigmoid\', \'tanh\' or \'reclin\'')

      for h in range(self.n_hidden_layers-1,-1,-1):
         self.dcs[h][:] = self.dlayer_acts[h+1]
         mllin.outer(self.dlayer_acts[h+1],self.layers[h],self.dWs[h])
         mllin.product_matrix_vector(self.Ws[h].T,self.dlayer_acts[h+1],self.dlayers[h])
         if self.activation_function == 'sigmoid':
             mlnonlin.dsigmoid(self.layers[h],self.dlayers[h],self.dlayer_acts[h])
         elif self.activation_function == 'tanh':
             mlnonlin.dtanh(self.layers[h],self.dlayers[h],self.dlayer_acts[h])
         elif self.activation_function == 'reclin':
             mlnonlin.dreclin(self.layers[h],self.dlayers[h],self.dlayer_acts[h])
         else:
             raise ValueError('activation_function must be either \'sigmoid\', \'tanh\' or \'reclin\'')

      self.U -= self.dU
      self.d -= self.dd
      for h in range(self.n_hidden_layers-1,-1,-1):
         self.Ws[h] -= self.dWs[h]
         self.cs[h] -= self.dcs[h]

      self.n_updates += 1
示例#3
0
    def apply_dactivation(self, output, doutput, dinput):
        """
        Apply the derivative of the activatiun fonction
	"""
        if self.activation_function == "sigmoid":
            mlnonlin.dsigmoid(output, doutput, dinput)
        elif self.activation_function == "tanh":
            mlnonlin.dtanh(output, doutput, dinput)
        elif self.activation_function == "reclin":
            mlnonlin.dreclin(output, doutput, dinput)
        elif self.activation_function == "softmax":
            dinput[:] = output * (doutput - (doutput * output).sum(axis=1).reshape((-1, 1)))
        else:
            raise ValueError("activation_function must be either 'sigmoid', 'tanh' or 'reclin'")
示例#4
0
    def apply_dactivation(self, output, doutput, dinput):
        """
        Apply the derivative of the activatiun fonction
	"""
        if self.activation_function == 'sigmoid':
            mlnonlin.dsigmoid(output,doutput,dinput)
        elif self.activation_function == 'tanh':
            mlnonlin.dtanh(output,doutput,dinput)
        elif self.activation_function == 'reclin':
            mlnonlin.dreclin(output,doutput,dinput)
        elif self.activation_function == 'softmax':
            dinput[:] = output*(doutput-(doutput*output).sum(axis=1).reshape((-1,1)))
	else:
            raise ValueError('activation_function must be either \'sigmoid\', \'tanh\' or \'reclin\'')