示例#1
0
文件: parse.py 项目: vibhatha/mlbox
def mlobject_from_dict(schema_type, schema_version, dict_value):
    ml_object = MLObject()
    ml_object.set_type(
        schema_version=schema_version,
        schema_type=schema_type,
    )
    dict_value['schema_type'] = schema_type
    dict_value['schema_version'] = schema_version
    MLObject.update_tree(ml_object, dict_value)
    errors = ml_object.validate()

    if errors:
        return None, errors
    else:
        return ml_object, None
示例#2
0
    def execute(self, result_object_schema_type, result_object_schema_version):
        # Create Result object
        results_object = MLObject()
        results_object.set_type(
            schema_type=result_object_schema_type,
            schema_version=result_object_schema_version,
        )

        # Mocked up results
        return_dict = {
            "data_output_path": str(Path("tests/data/data_output.csv")),
            "data_statistics_path": str(Path("tests/data/data_stats.csv")),
            "data_schemas_path": str(Path("tests/data/data_schemas.yaml")),
            "feature_file_path": str(Path("tests/data/feature_file.yaml")),
        }

        results_object.data_output_path = return_dict["data_output_path"]
        results_object.data_statistics_path = return_dict[
            "data_statistics_path"]
        results_object.data_schemas_path = return_dict["data_schemas_path"]
        results_object.feature_file_path = return_dict["feature_file_path"]

        _ = results_object.validate()  # noqa
        return results_object
    def execute(self, result_object_schema_type, result_object_schema_version):
        # Create Result object
        results_object = MLObject()
        results_object.set_type(
            schema_type=result_object_schema_type,
            schema_version=result_object_schema_version,
        )

        # Mocked up results
        return_dict = {
            "training_execution_id": str(uuid.uuid4()),
            "accuracy": float(random.randrange(0, 100) / 100),
            "global_step": 10**random.randrange(2, 4),
            "loss": float(random.randrange(1000, 9999) / 1000),
        }

        results_object.training_execution_id = return_dict[
            "training_execution_id"]
        results_object.accuracy = return_dict["accuracy"]
        results_object.global_step = return_dict["global_step"]
        results_object.loss = return_dict["loss"]

        errors = results_object.validate()  # noqa
        return results_object