def test_smoother_ref_traj3_1(): """ test_smoother_ref_traj3_1 . Just check if it can be computed and does not trigger underflow warnings. """ traj = simple_traj3() theta = np.array([-1.0, 1.0]) smoother_1 = TrajectorySmoother1(traj, theta) smoother_1.computeProbs()
def test_em_1(): """ Very simple test: we pick some trajectories and verify that the LL increases with EM. """ trajs = [simple_traj1(), simple_traj4(), simple_traj3()] theta_start = 0.1 * np.ones(2) history = learn_em(trajs_estim_obj_fun_1, trajs, theta_start) # (ll_end, theta_end) = history[-1] # Very simple check here: we verify the progression goes upward # the likelihood: for t in range(len(history)-1): (ll_1, _) = history[t] (ll_2, _) = history[t+1] assert ll_1 <= ll_2
def test_em_1(): """ Very simple test: we pick some trajectories and verify that the LL increases with EM. """ trajs = [simple_traj1(), simple_traj4(), simple_traj3()] theta_start = 0.1 * np.ones(2) history = learn_em(trajs_estim_obj_fun_1, trajs, theta_start) # (ll_end, theta_end) = history[-1] # Very simple check here: we verify the progression goes upward # the likelihood: for t in range(len(history) - 1): (ll_1, _) = history[t] (ll_2, _) = history[t + 1] assert ll_1 <= ll_2