def test_random_crop_lazy(self): with pytest.raises(TypeError): # size must be an int RandomCrop(size=(112, 112), lazy=True) with pytest.raises(AssertionError): # "size > height" or "size > width" is not allowed imgs = list(np.random.rand(2, 224, 341, 3)) results = dict(imgs=imgs) random_crop = RandomCrop(size=320, lazy=True) random_crop(results) target_keys = ['imgs', 'crop_bbox', 'img_shape', 'lazy'] # General case imgs = list(np.random.rand(2, 224, 341, 3)) results = dict(imgs=imgs) random_crop = RandomCrop(size=224, lazy=True) random_crop_result = random_crop(results) assert assert_dict_has_keys(random_crop_result, target_keys) assert id(imgs) == id(random_crop_result['imgs']) random_crop_result_fuse = Fuse()(random_crop_result) assert 'lazy' not in random_crop_result_fuse assert check_crop(imgs, random_crop_result_fuse['imgs'], results['crop_bbox']) h, w = random_crop_result_fuse['img_shape'] assert h == w == 224 # Test the case that no need for cropping imgs = list(np.random.rand(2, 224, 224, 3)) results = dict(imgs=imgs) random_crop = RandomCrop(size=224, lazy=True) random_crop_result = random_crop(results) assert assert_dict_has_keys(random_crop_result, target_keys) assert id(imgs) == id(random_crop_result['imgs']) random_crop_result_fuse = Fuse()(random_crop_result) assert 'lazy' not in random_crop_result_fuse assert check_crop(imgs, random_crop_result_fuse['imgs'], results['crop_bbox']) h, w = random_crop_result_fuse['img_shape'] assert h == w == 224 # Test the one-side-equal case imgs = list(np.random.rand(2, 224, 225, 3)) results = dict(imgs=imgs) random_crop = RandomCrop(size=224, lazy=True) random_crop_result = random_crop(results) assert assert_dict_has_keys(random_crop_result, target_keys) assert id(imgs) == id(random_crop_result['imgs']) random_crop_result_fuse = Fuse()(random_crop_result) assert 'lazy' not in random_crop_result_fuse assert check_crop(imgs, random_crop_result_fuse['imgs'], results['crop_bbox']) h, w = random_crop_result_fuse['img_shape'] assert h == w == 224 assert repr(random_crop) == (f'{random_crop.__class__.__name__}' f'(size={224}, lazy={True})')
def test_resize_lazy(self): with pytest.raises(ValueError): # scale must be positive Resize(-0.5, lazy=True) with pytest.raises(TypeError): # scale must be tuple of int Resize('224', lazy=True) target_keys = [ 'imgs', 'img_shape', 'keep_ratio', 'scale_factor', 'modality' ] # scale with -1 to indicate np.inf imgs = list(np.random.rand(2, 240, 320, 3)) results = dict(imgs=imgs, modality='RGB') resize = Resize(scale=(-1, 256), keep_ratio=True, lazy=True) resize_results = resize(results) assert id(imgs) == id(resize_results['imgs']) assert assert_dict_has_keys(resize_results, target_keys) resize_results_fuse = Fuse()(resize_results) assert np.all(resize_results_fuse['scale_factor'] == np.array( [341 / 320, 256 / 240], dtype=np.float32)) assert resize_results_fuse['img_shape'] == (256, 341) # scale with a normal tuple (320, 320) to indicate np.inf imgs = list(np.random.rand(2, 240, 320, 3)) results = dict(imgs=imgs, modality='RGB') resize = Resize(scale=(320, 320), keep_ratio=False, lazy=True) resize_results = resize(results) assert id(imgs) == id(resize_results['imgs']) assert assert_dict_has_keys(resize_results, target_keys) resize_results_fuse = Fuse()(resize_results) assert np.all(resize_results_fuse['scale_factor'] == np.array( [1, 320 / 240], dtype=np.float32)) assert resize_results_fuse['img_shape'] == (320, 320) # scale with a normal tuple (341, 256) to indicate np.inf imgs = list(np.random.rand(2, 240, 320, 3)) results = dict(imgs=imgs, modality='RGB') resize = Resize(scale=(341, 256), keep_ratio=False, lazy=True) resize_results = resize(results) assert id(imgs) == id(resize_results['imgs']) assert assert_dict_has_keys(resize_results, target_keys) resize_results_fuse = Fuse()(resize_results) assert np.all(resize_results_fuse['scale_factor'] == np.array( [341 / 320, 256 / 240], dtype=np.float32)) assert resize_results_fuse['img_shape'] == (256, 341) assert repr(resize) == (f'{resize.__class__.__name__ }' f'(scale={(341, 256)}, keep_ratio={False}, ' + f'interpolation=bilinear, lazy={True})')
def test_flip_lazy(self): with pytest.raises(ValueError): Flip(direction='vertically', lazy=True) target_keys = ['imgs', 'flip_direction', 'modality'] # do not flip imgs. imgs = list(np.random.rand(2, 64, 64, 3)) imgs_tmp = imgs.copy() results = dict(imgs=imgs_tmp, modality='RGB') flip = Flip(flip_ratio=0, direction='horizontal', lazy=True) flip_results = flip(results) assert id(imgs_tmp) == id(flip_results['imgs']) assert assert_dict_has_keys(flip_results, target_keys) flip_results_fuse = Fuse()(flip_results) assert np.equal(imgs, results['imgs']).all() assert id(flip_results['imgs']) == id(results['imgs']) assert flip_results_fuse['imgs'][0].shape == (64, 64, 3) # always flip imgs horizontally. imgs = list(np.random.rand(2, 64, 64, 3)) imgs_tmp = imgs.copy() results = dict(imgs=imgs_tmp, modality='RGB') flip = Flip(flip_ratio=1, direction='horizontal', lazy=True) flip_results = flip(results) assert id(imgs_tmp) == id(flip_results['imgs']) assert assert_dict_has_keys(flip_results, target_keys) flip_results_fuse = Fuse()(flip_results) assert check_flip(imgs, flip_results['imgs'], flip_results['flip_direction']) assert id(flip_results['imgs']) == id(results['imgs']) assert flip_results_fuse['imgs'][0].shape == (64, 64, 3) # always flip imgs vertivally. imgs = list(np.random.rand(2, 64, 64, 3)) imgs_tmp = imgs.copy() results = dict(imgs=imgs_tmp, modality='RGB') flip = Flip(flip_ratio=1, direction='vertical', lazy=True) flip_results = flip(results) assert id(imgs_tmp) == id(flip_results['imgs']) assert assert_dict_has_keys(flip_results, target_keys) flip_results_fuse = Fuse()(flip_results) assert check_flip(imgs, flip_results['imgs'], flip_results['flip_direction']) assert id(flip_results['imgs']) == id(results['imgs']) assert flip_results_fuse['imgs'][0].shape == (64, 64, 3) assert repr(flip) == (f'{flip.__class__.__name__}' f'(flip_ratio={1}, direction=vertical, ' f'flip_label_map={None}, lazy={True})')
def test_random_resized_crop_lazy(self): target_keys = ['imgs', 'crop_bbox', 'img_shape', 'lazy'] # There will be a slight difference because of rounding eps = 0.01 imgs = list(np.random.rand(2, 256, 341, 3)) results = dict(imgs=imgs) with pytest.raises(AssertionError): # area_range[0] > area_range[1], which is wrong random_crop = RandomResizedCrop(area_range=(0.9, 0.7), lazy=True) random_crop(results) with pytest.raises(AssertionError): # 0 > area_range[0] and area_range[1] > 1, which is wrong random_crop = RandomResizedCrop(aspect_ratio_range=(-0.1, 2.0), lazy=True) random_crop(results) random_crop = RandomResizedCrop(lazy=True) random_crop_result = random_crop(results) assert assert_dict_has_keys(random_crop_result, target_keys) assert id(imgs) == id(random_crop_result['imgs']) random_crop_result_fuse = Fuse()(random_crop_result) assert check_crop(imgs, random_crop_result_fuse['imgs'], results['crop_bbox']) h, w = random_crop_result['img_shape'] assert ((0.08 - eps <= h * w / 256 / 341) and (h * w / 256 / 341 <= 1 + eps)) assert (3. / 4. - eps <= h / w) and (h / w - eps <= 4. / 3.) assert repr(random_crop) == (f'{random_crop.__class__.__name__}' f'(area_range={(0.08, 1.0)}, ' f'aspect_ratio_range={(3 / 4, 4 / 3)}, ' f'lazy={True})') random_crop = RandomResizedCrop(area_range=(0.9, 0.9), aspect_ratio_range=(10.0, 10.1), lazy=True) # Test fallback cases by very big area range imgs = np.random.rand(2, 256, 341, 3) results = dict(imgs=imgs) random_crop_result = random_crop(results) assert assert_dict_has_keys(random_crop_result, target_keys) assert id(imgs) == id(random_crop_result['imgs']) random_crop_result_fuse = Fuse()(random_crop_result) assert check_crop(imgs, random_crop_result_fuse['imgs'], results['crop_bbox']) h, w = random_crop_result['img_shape'] assert h == w == 256
def test_center_crop_lazy(self): with pytest.raises(TypeError): # crop_size must be int or tuple of int CenterCrop(0.5) with pytest.raises(TypeError): # crop_size must be int or tuple of int CenterCrop('224') with pytest.raises(TypeError): # crop_size must be int or tuple of int CenterCrop([224, 224]) # center crop with crop_size 224 imgs = list(np.random.rand(2, 240, 320, 3)) results = dict(imgs=imgs) center_crop = CenterCrop(crop_size=224, lazy=True) center_crop_results = center_crop(results) target_keys = ['imgs', 'crop_bbox', 'img_shape'] assert assert_dict_has_keys(center_crop_results, target_keys) center_crop_results_fuse = Fuse()(center_crop_results) assert check_crop(imgs, center_crop_results_fuse['imgs'], center_crop_results['crop_bbox']) assert np.all(center_crop_results_fuse['crop_bbox'] == np.array( [48, 8, 272, 232])) assert center_crop_results_fuse['img_shape'] == (224, 224) assert repr(center_crop) == (f'{center_crop.__class__.__name__}' f'(crop_size={(224, 224)}, lazy={True})')
def test_multi_scale_crop_lazy(self): with pytest.raises(TypeError): # input_size must be int or tuple of int MultiScaleCrop(0.5, lazy=True) with pytest.raises(TypeError): # input_size must be int or tuple of int MultiScaleCrop('224', lazy=True) with pytest.raises(TypeError): # input_size must be int or tuple of int MultiScaleCrop([224, 224], lazy=True) with pytest.raises(TypeError): # scales must be tuple. MultiScaleCrop(224, scales=[ 1, ], lazy=True) with pytest.raises(ValueError): # num_fix_crops must be in [5, 13] MultiScaleCrop(224, num_fixed_crops=6, lazy=True) target_keys = ['imgs', 'crop_bbox', 'img_shape', 'scales'] # MultiScaleCrop with normal crops. imgs = list(np.random.rand(2, 256, 341, 3)) results = dict(imgs=imgs) config = dict(input_size=224, scales=(1, 0.8), random_crop=False, max_wh_scale_gap=0, lazy=True) multi_scale_crop = MultiScaleCrop(**config) multi_scale_crop_result = multi_scale_crop(results) assert id(imgs) == id(multi_scale_crop_result['imgs']) assert assert_dict_has_keys(multi_scale_crop_result, target_keys) multi_scale_crop_result_fuse = Fuse()(multi_scale_crop_result) assert check_crop(imgs, multi_scale_crop_result_fuse['imgs'], multi_scale_crop_result['crop_bbox']) assert multi_scale_crop_result_fuse['img_shape'] in [(256, 256), (204, 204)] # MultiScaleCrop with more fixed crops. imgs = list(np.random.rand(2, 256, 341, 3)) results = dict(imgs=imgs) config = dict(input_size=224, scales=(1, 0.8), random_crop=False, max_wh_scale_gap=0, num_fixed_crops=13, lazy=True) multi_scale_crop = MultiScaleCrop(**config) multi_scale_crop_result = multi_scale_crop(results) assert id(imgs) == id(multi_scale_crop_result['imgs']) assert assert_dict_has_keys(multi_scale_crop_result, target_keys) multi_scale_crop_result_fuse = Fuse()(multi_scale_crop_result) assert check_crop(imgs, multi_scale_crop_result_fuse['imgs'], multi_scale_crop_result['crop_bbox']) assert multi_scale_crop_result_fuse['img_shape'] in [(256, 256), (204, 204)] # MultiScaleCrop with random crop. imgs = list(np.random.rand(2, 256, 341, 3)) results = dict(imgs=imgs) config = dict(input_size=224, scales=(1, 0.8), random_crop=True, max_wh_scale_gap=0, lazy=True) multi_scale_crop = MultiScaleCrop(**config) multi_scale_crop_result = multi_scale_crop(results) assert id(imgs) == id(multi_scale_crop_result['imgs']) assert assert_dict_has_keys(multi_scale_crop_result, target_keys) multi_scale_crop_result_fuse = Fuse()(multi_scale_crop_result) assert check_crop(imgs, multi_scale_crop_result_fuse['imgs'], multi_scale_crop_result['crop_bbox']) assert (multi_scale_crop_result_fuse['img_shape'] in [(256, 256), (204, 204)]) assert repr(multi_scale_crop) == ( f'{multi_scale_crop.__class__.__name__}' f'(input_size={(224, 224)}, scales={(1, 0.8)}, ' f'max_wh_scale_gap={0}, random_crop={True}, ' f'num_fixed_crops={5}, lazy={True})')