示例#1
0
    def test_box_iou_rotated_cpu(self):
        from mmcv.ops import box_iou_rotated
        np_boxes1 = np.asarray(
            [[1.0, 1.0, 3.0, 4.0, 0.5], [2.0, 2.0, 3.0, 4.0, 0.6],
             [7.0, 7.0, 8.0, 8.0, 0.4]],
            dtype=np.float32)
        np_boxes2 = np.asarray(
            [[0.0, 2.0, 2.0, 5.0, 0.3], [2.0, 1.0, 3.0, 3.0, 0.5],
             [5.0, 5.0, 6.0, 7.0, 0.4]],
            dtype=np.float32)
        np_expect_ious = np.asarray(
            [[0.3708, 0.4351, 0.0000], [0.1104, 0.4487, 0.0424],
             [0.0000, 0.0000, 0.3622]],
            dtype=np.float32)
        np_expect_ious_aligned = np.asarray([0.3708, 0.4487, 0.3622],
                                            dtype=np.float32)

        boxes1 = torch.from_numpy(np_boxes1)
        boxes2 = torch.from_numpy(np_boxes2)

        ious = box_iou_rotated(boxes1, boxes2)
        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)

        ious = box_iou_rotated(boxes1, boxes2, aligned=True)
        assert np.allclose(ious.cpu().numpy(),
                           np_expect_ious_aligned,
                           atol=1e-4)
示例#2
0
def check_installation():
    """Check whether mmcv-full has been installed successfully."""
    np_boxes1 = np.asarray(
        [[1.0, 1.0, 3.0, 4.0, 0.5], [2.0, 2.0, 3.0, 4.0, 0.6],
         [7.0, 7.0, 8.0, 8.0, 0.4]],
        dtype=np.float32)
    np_boxes2 = np.asarray(
        [[0.0, 2.0, 2.0, 5.0, 0.3], [2.0, 1.0, 3.0, 3.0, 0.5],
         [5.0, 5.0, 6.0, 7.0, 0.4]],
        dtype=np.float32)
    boxes1 = torch.from_numpy(np_boxes1)
    boxes2 = torch.from_numpy(np_boxes2)

    # test mmcv-full with CPU ops
    box_iou_rotated(boxes1, boxes2)
    print('CPU ops were compiled successfully.')

    # test mmcv-full with both CPU and CUDA ops
    if torch.cuda.is_available():
        boxes1 = boxes1.cuda()
        boxes2 = boxes2.cuda()
        box_iou_rotated(boxes1, boxes2)
        print('CUDA ops were compiled successfully.')
    else:
        print('No CUDA runtime is found, skipping the checking of CUDA ops.')
示例#3
0
    def test_box_iou_rotated_iof_cuda(self):
        from mmcv.ops import box_iou_rotated
        np_boxes1 = np.asarray(
            [[1.0, 1.0, 3.0, 4.0, 0.5], [2.0, 2.0, 3.0, 4.0, 0.6],
             [7.0, 7.0, 8.0, 8.0, 0.4]],
            dtype=np.float32)
        np_boxes2 = np.asarray(
            [[0.0, 2.0, 2.0, 5.0, 0.3], [2.0, 1.0, 3.0, 3.0, 0.5],
             [5.0, 5.0, 6.0, 7.0, 0.4]],
            dtype=np.float32)
        np_expect_ious = np.asarray(
            [[0.4959, 0.5306, 0.0000], [0.1823, 0.5420, 0.1832],
             [0.0000, 0.0000, 0.4404]],
            dtype=np.float32)
        np_expect_ious_aligned = np.asarray([0.4959, 0.5420, 0.4404],
                                            dtype=np.float32)

        boxes1 = torch.from_numpy(np_boxes1).cuda()
        boxes2 = torch.from_numpy(np_boxes2).cuda()

        ious = box_iou_rotated(boxes1, boxes2, mode='iof')
        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)

        ious = box_iou_rotated(boxes1, boxes2, mode='iof', aligned=True)
        assert np.allclose(ious.cpu().numpy(),
                           np_expect_ious_aligned,
                           atol=1e-4)
示例#4
0
    def test_box_iou_rotated_iof_cpu(self):
        from mmcv.ops import box_iou_rotated
        np_boxes1 = np.asarray(
            [[1.0, 1.0, 3.0, 4.0, 0.5], [2.0, 2.0, 3.0, 4.0, 0.6],
             [7.0, 7.0, 8.0, 8.0, 0.4]],
            dtype=np.float32)
        np_boxes2 = np.asarray(
            [[0.0, 2.0, 2.0, 5.0, 0.3], [2.0, 1.0, 3.0, 3.0, 0.5],
             [5.0, 5.0, 6.0, 7.0, 0.4]],
            dtype=np.float32)
        np_expect_ious = np.asarray(
            [[0.4959, 0.5306, 0.0000], [0.1823, 0.5420, 0.1832],
             [0.0000, 0.0000, 0.4404]],
            dtype=np.float32)
        np_expect_ious_aligned = np.asarray([0.4959, 0.5420, 0.4404],
                                            dtype=np.float32)

        boxes1 = torch.from_numpy(np_boxes1)
        boxes2 = torch.from_numpy(np_boxes2)

        # test cw angle definition
        ious = box_iou_rotated(boxes1, boxes2, mode='iof')
        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)
        ious = box_iou_rotated(boxes1, boxes2, mode='iof', aligned=True)
        assert np.allclose(ious.cpu().numpy(),
                           np_expect_ious_aligned,
                           atol=1e-4)

        # test ccw angle definition
        boxes1[..., -1] *= -1
        boxes2[..., -1] *= -1
        ious = box_iou_rotated(boxes1, boxes2, mode='iof', clockwise=False)
        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)
        ious = box_iou_rotated(boxes1,
                               boxes2,
                               mode='iof',
                               aligned=True,
                               clockwise=False)
        assert np.allclose(ious.cpu().numpy(),
                           np_expect_ious_aligned,
                           atol=1e-4)
示例#5
0
def check_installation():
    """Check whether mmcv-full has been installed successfully."""
    np_boxes1 = np.asarray(
        [[1.0, 1.0, 3.0, 4.0, 0.5], [2.0, 2.0, 3.0, 4.0, 0.6],
         [7.0, 7.0, 8.0, 8.0, 0.4]],
        dtype=np.float32)
    np_boxes2 = np.asarray(
        [[0.0, 2.0, 2.0, 5.0, 0.3], [2.0, 1.0, 3.0, 3.0, 0.5],
         [5.0, 5.0, 6.0, 7.0, 0.4]],
        dtype=np.float32)
    boxes1 = torch.from_numpy(np_boxes1)
    boxes2 = torch.from_numpy(np_boxes2)

    # test mmcv-full with CPU ops
    box_iou_rotated(boxes1, boxes2)

    # test mmcv-full with both CPU and CUDA ops
    if torch.cuda.is_available():
        boxes1 = boxes1.cuda()
        boxes2 = boxes2.cuda()

        box_iou_rotated(boxes1, boxes2)
示例#6
0
    def test_box_iou_rotated_cuda(self):
        from mmcv.ops import box_iou_rotated
        np_boxes1 = np.asarray(
            [[1.0, 1.0, 3.0, 4.0, 0.5], [2.0, 2.0, 3.0, 4.0, 0.6],
             [7.0, 7.0, 8.0, 8.0, 0.4]],
            dtype=np.float32)
        np_boxes2 = np.asarray(
            [[0.0, 2.0, 2.0, 5.0, 0.3], [2.0, 1.0, 3.0, 3.0, 0.5],
             [5.0, 5.0, 6.0, 7.0, 0.4]],
            dtype=np.float32)
        np_expect_ious = np.asarray(
            [[0.3708, 0.4351, 0.0000], [0.1104, 0.4487, 0.0424],
             [0.0000, 0.0000, 0.3622]],
            dtype=np.float32)
        np_expect_ious_aligned = np.asarray([0.3708, 0.4487, 0.3622],
                                            dtype=np.float32)

        boxes1 = torch.from_numpy(np_boxes1).cuda()
        boxes2 = torch.from_numpy(np_boxes2).cuda()

        # test cw angle definition
        ious = box_iou_rotated(boxes1, boxes2)
        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)

        ious = box_iou_rotated(boxes1, boxes2, aligned=True)
        assert np.allclose(ious.cpu().numpy(),
                           np_expect_ious_aligned,
                           atol=1e-4)

        # test ccw angle definition
        boxes1[..., -1] *= -1
        boxes2[..., -1] *= -1
        ious = box_iou_rotated(boxes1, boxes2, clockwise=False)
        assert np.allclose(ious.cpu().numpy(), np_expect_ious, atol=1e-4)

        ious = box_iou_rotated(boxes1, boxes2, aligned=True, clockwise=False)
        assert np.allclose(ious.cpu().numpy(),
                           np_expect_ious_aligned,
                           atol=1e-4)