示例#1
0
    def test_ml_nms_rotated(self):
        from mmcv.ops import nms_rotated
        np_boxes = np.array(
            [[6.0, 3.0, 8.0, 7.0, 0.5, 0.7], [3.0, 6.0, 9.0, 11.0, 0.6, 0.8],
             [3.0, 7.0, 10.0, 12.0, 0.3, 0.5], [1.0, 4.0, 13.0, 7.0, 0.6, 0.9]
             ],
            dtype=np.float32)
        np_labels = np.array([1, 0, 1, 0], dtype=np.float32)

        np_expect_dets = np.array(
            [[1.0, 4.0, 13.0, 7.0, 0.6], [3.0, 6.0, 9.0, 11.0, 0.6],
             [6.0, 3.0, 8.0, 7.0, 0.5]],
            dtype=np.float32)
        np_expect_keep_inds = np.array([3, 1, 0], dtype=np.int64)

        boxes = torch.from_numpy(np_boxes).cuda()
        labels = torch.from_numpy(np_labels).cuda()

        # test cw angle definition
        dets, keep_inds = nms_rotated(boxes[:, :5], boxes[:, -1], 0.5, labels)

        assert np.allclose(dets.cpu().numpy()[:, :5], np_expect_dets)
        assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds)

        # test ccw angle definition
        boxes[..., -2] *= -1
        dets, keep_inds = nms_rotated(boxes[:, :5],
                                      boxes[:, -1],
                                      0.5,
                                      labels,
                                      clockwise=False)
        dets[..., -2] *= -1
        assert np.allclose(dets.cpu().numpy()[:, :5], np_expect_dets)
        assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds)
示例#2
0
    def test_nms_rotated(self):
        from mmcv.ops import nms_rotated
        np_boxes = np.array(
            [[6.0, 3.0, 8.0, 7.0, 0.5, 0.7], [3.0, 6.0, 9.0, 11.0, 0.6, 0.8],
             [3.0, 7.0, 10.0, 12.0, 0.3, 0.5], [1.0, 4.0, 13.0, 7.0, 0.6, 0.9]
             ],
            dtype=np.float32)

        np_expect_dets = np.array(
            [[1.0, 4.0, 13.0, 7.0, 0.6], [3.0, 6.0, 9.0, 11.0, 0.6],
             [6.0, 3.0, 8.0, 7.0, 0.5]],
            dtype=np.float32)
        np_expect_keep_inds = np.array([3, 1, 0], dtype=np.int64)

        boxes = torch.from_numpy(np_boxes).cuda()

        # test cw angle definition
        dets, keep_inds = nms_rotated(boxes[:, :5], boxes[:, -1], 0.5)
        assert np.allclose(dets.cpu().numpy()[:, :5], np_expect_dets)
        assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds)

        # test ccw angle definition
        boxes[..., -2] *= -1
        dets, keep_inds = nms_rotated(boxes[:, :5],
                                      boxes[:, -1],
                                      0.5,
                                      clockwise=False)
        dets[..., -2] *= -1
        assert np.allclose(dets.cpu().numpy()[:, :5], np_expect_dets)
        assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds)

        # test batched_nms with nms_rotated
        from mmcv.ops import batched_nms

        nms_cfg = dict(type='nms_rotated', iou_threshold=0.5)

        boxes, keep = batched_nms(torch.from_numpy(np_boxes[:, :5]),
                                  torch.from_numpy(np_boxes[:, -1]),
                                  torch.from_numpy(np.array([0, 0, 0, 0])),
                                  nms_cfg,
                                  class_agnostic=False)
        assert np.allclose(boxes.cpu().numpy()[:, :5], np_expect_dets)
        assert np.allclose(keep.cpu().numpy(), np_expect_keep_inds)
示例#3
0
    def test_nms_rotated(self):
        from mmcv.ops import nms_rotated
        np_boxes = np.array(
            [[6.0, 3.0, 8.0, 7.0, 0.5, 0.7], [3.0, 6.0, 9.0, 11.0, 0.6, 0.8],
             [3.0, 7.0, 10.0, 12.0, 0.3, 0.5], [1.0, 4.0, 13.0, 7.0, 0.6, 0.9]
             ],
            dtype=np.float32)

        np_expect_dets = np.array(
            [[1.0, 4.0, 13.0, 7.0, 0.6], [3.0, 6.0, 9.0, 11.0, 0.6],
             [6.0, 3.0, 8.0, 7.0, 0.5]],
            dtype=np.float32)
        np_expect_keep_inds = np.array([3, 1, 0], dtype=np.int64)

        boxes = torch.from_numpy(np_boxes).cuda()

        dets, keep_inds = nms_rotated(boxes[:, :5], boxes[:, -1], 0.5)
        assert np.allclose(dets.cpu().numpy()[:, :5], np_expect_dets)
        assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds)
示例#4
0
    def test_ml_nms_rotated(self):
        if not torch.cuda.is_available():
            return
        from mmcv.ops import nms_rotated
        np_boxes = np.array(
            [[6.0, 3.0, 8.0, 7.0, 0.5, 0.7], [3.0, 6.0, 9.0, 11.0, 0.6, 0.8],
             [3.0, 7.0, 10.0, 12.0, 0.3, 0.5], [1.0, 4.0, 13.0, 7.0, 0.6, 0.9]
             ],
            dtype=np.float32)
        np_labels = np.array([1, 0, 1, 0], dtype=np.float32)

        np_expect_dets = np.array(
            [[1.0, 4.0, 13.0, 7.0, 0.6], [3.0, 6.0, 9.0, 11.0, 0.6],
             [6.0, 3.0, 8.0, 7.0, 0.5]],
            dtype=np.float32)
        np_expect_keep_inds = np.array([3, 1, 0], dtype=np.int64)

        boxes = torch.from_numpy(np_boxes).cuda()
        labels = torch.from_numpy(np_labels).cuda()

        dets, keep_inds = nms_rotated(boxes, 0.5, labels, True)

        assert np.allclose(dets.cpu().numpy(), np_expect_dets)
        assert np.allclose(keep_inds.cpu().numpy(), np_expect_keep_inds)