示例#1
0
    def get_bboxes(self,
                   tl_result,
                   br_result,
                   mask,
                   mid_tl_result,
                   mid_br_result,
                   mid_mask,
                   img_metas,
                   cfg,
                   rescale=False):
        tl_heat = tl_result[:, :self.num_classes, :, :]
        tl_off_c = tl_result[:,
                             self.num_classes + 2:self.num_classes + 4, :, :]
        tl_regr = tl_result[:, -2:, :, :]
        br_heat = br_result[:, :self.num_classes, :, :]
        br_off_c = br_result[:,
                             self.num_classes + 2:self.num_classes + 4, :, :]
        br_regr = br_result[:, -2:, :, :]
        #pdb.set_trace()
        if len(tl_heat) == 2:
            img_metas = img_metas[0]

        if isinstance(img_metas, list):
            img_metas_1 = img_metas[0]
        else:
            img_metas_1 = img_metas

        batch_bboxes, batch_scores, batch_clses = _decode_center(
            tl_heat=tl_heat,
            br_heat=br_heat,
            tl_off_c=tl_off_c,
            br_off_c=br_off_c,
            tl_regr=tl_regr,
            br_regr=br_regr,
            img_meta=img_metas_1)  #[0]
        h, w, _ = img_metas_1['ori_shape']
        #h, w, _ = img_metas[0]['ori_shape']

        scale = img_metas_1['scale']
        #batch_bboxes /= scale

        if len(batch_bboxes) == 2:
            # print('flip')
            batch_bboxes[1, :, [0, 2]] = w - batch_bboxes[1, :, [2, 0]]

        batch_bboxes = batch_bboxes.view([-1, 4]).unsqueeze(0)
        batch_scores = batch_scores.view([-1, 1]).unsqueeze(0)
        batch_clses = batch_clses.view([-1, 1]).unsqueeze(0)
        # pdb.set_trace()
        # assert  len(img_metas)==len(batch_bboxes)
        result_list = []
        for img_id in range(len(img_metas)):
            # pdb.set_trace()
            bboxes = batch_bboxes[img_id]
            scores = batch_scores[img_id]
            clses = batch_clses[img_id]

            scores_n = scores.cpu().numpy()
            idx = scores_n.argsort(0)[::-1]
            idx = torch.Tensor(idx.astype(float)).long()

            bboxes = bboxes[idx].squeeze()
            scores = scores[idx].view(-1)
            clses = clses[idx].view(-1)

            det_num = len(bboxes)

            # img_h, img_w, _ = img_metas[img_id]['img_shape']
            # ori_h, ori_w, _ = img_metas[img_id]['ori_shape']
            # h_scale = float(ori_h) / float(img_h)
            # w_scale = float(ori_w) / float(img_w)

            # bboxes[:,0::2] *= w_scale
            # bboxes[:,1::2] *= h_scale
            '''clses_idx = (clses + 1).long()
            det_idx   = torch.Tensor(np.arange(det_num)).long()
            scores_81 = -1*torch.ones(det_num, self.num_classes + 1).type_as(scores)
            scores_81[det_idx, clses_idx] = scores

            bboxes_scores = torch.cat([bboxes, scores.unsqueeze(-1)], 1)
            nms_bboxes, _ = nms(bboxes_scores, 0.5)
            #nms_bboxes, nms_labels = multiclass_nms(bboxes, scores_81, 0.5, cfg.nms, cfg.max_per_img)

            result_list.append((nms_bboxes, nms_labels))'''
            detections = torch.cat([bboxes, scores.unsqueeze(-1)], -1)
            keepinds = (detections[:, -1] > -0.1)  # 0.05
            detections = detections[keepinds]
            labels = clses[keepinds]

            areas = (bboxes[:, 2] - bboxes[:, 0]) * (bboxes[:, 3] -
                                                     bboxes[:, 1])
            areas = areas[keepinds]

            #pdb.set_trace()
            if scale == 0.8:
                keepinds2 = (areas >= 96**2)
                detections = detections[keepinds2]
                labels = labels[keepinds2]
                topk = 35
            #elif scale == 2.0:
            #    keepinds2 = (areas <= 32**2)
            #    detections = detections[keepinds2]
            #    labels = labels[keepinds2]
            #    topk = 40
            else:
                topk = 100

            # idx = detections[:,-1].topk(len(detections))[1]
            # detections = detections[idx]
            # labels = labels[idx]

            out_bboxes = []
            out_labels = []
            # pdb.set_trace()
            for i in range(80):
                keepinds = (labels == i)
                nms_detections = detections[keepinds]
                a = nms_detections.size(0)
                if nms_detections.size(0) == 0:
                    # print('no NMS')
                    continue
                nms_detections, _ = soft_nms(nms_detections,
                                             0.5,
                                             'gaussian',
                                             sigma=0.7)
                b = nms_detections.size(0)
                # print(a,b)

                out_bboxes.append(nms_detections)
                out_labels += [i for _ in range(len(nms_detections))]

            if len(out_bboxes) > 0:
                out_bboxes = torch.cat(out_bboxes)
                # out_labels = 1 + torch.Tensor(out_labels)
                out_labels = torch.Tensor(out_labels)
            else:
                out_bboxes = torch.Tensor(out_bboxes).cuda()
                out_labels = torch.Tensor(out_labels)

            # out_labels = 1+torch.Tensor(out_labels)

            # pdb.set_trace()
            if len(out_bboxes) > 0:
                out_bboxes_np = out_bboxes.cpu().numpy()
                out_labels_np = out_labels.cpu().numpy()
                idx = np.argsort(out_bboxes_np[:, -1])[::-1][:topk]  #100
                out_bboxes_np = out_bboxes_np[idx, :]
                out_labels_np = out_labels_np[idx]
                out_bboxes = torch.Tensor(out_bboxes_np).type_as(out_bboxes)
                out_labels = torch.Tensor(out_labels_np).type_as(out_labels)

            # pdb.set_trace()

            result_list.append((out_bboxes, out_labels))
        return result_list
def merge_detects_all(data_all,
                      img_dir=None,
                      is_soft=False,
                      is_vote=False,
                      is_small_extend=False,
                      beta=5):
    data_vote = {}
    max_dets = {}
    start = time.time()
    print('==> data load', start - start0)
    count = 0

    for key, bxs in data_all.items():
        if is_border:
            img = cv2.imread(img_dir + key)
            sz = img.shape
        count += 1
        if count % 5 == 0:
            end = time.time()
            print(count, 'time=%0.2f' % (end - start))
        if not key in data_vote:
            data_vote[key] = [
                np.empty((0, 5), np.float32) for cls in range(num_cls)
            ]

        result = []
        if img_dir is not None:
            im = cv2.imread(os.path.join(img_dir, key))
            im_sz = im.shape
            # bxs=get_merged_box(bxs, im_sz)
        #
        for cls in range(num_cls):
            if len(bxs[cls]) == 0:
                continue
            # dets_all= bxs[cls].astype(np.float32).copy()
            dets_all = np.array(bxs[cls], np.float32)
            dets_nms, _ = nms(dets_all, nms_th)
            group_coef = 0.75
            if is_vote:
                vote_dets = box_utils.box_voting(dets_nms,
                                                 dets_all,
                                                 group_coef,
                                                 scoring_method='IOU_WAVG',
                                                 beta=beta)
            else:
                vote_dets = dets_nms

            # print(vote_dets[:,4])
            if is_soft:
                idx = np.argsort(-vote_dets[:, 4])
                dim = min(4000, len(idx))
                vote_dets = vote_dets[idx[:dim]].copy()
                vote_dets, _ = soft_nms(vote_dets, 0.5, min_score=1e-9)

            # idx = np.argsort(-vote_dets[:, 4])
            # vote_dets = vote_dets[idx].copy()
            if is_border:
                vote_dets[vote_dets[:, 0] < 10, 4] *= 0.7
                vote_dets[vote_dets[:, 1] < 10, 4] *= 0.7
                vote_dets[vote_dets[:, 3] > sz[0] - 10, 4] *= 0.7
                vote_dets[vote_dets[:, 2] > sz[1] - 10, 4] *= 0.7
            vote_dets = vote_dets[vote_dets[:, 4] > cls_th_v2]
            data_vote[key][cls] = vote_dets.copy()
            zz = 0
        max_dets[key] = max_class_per_position(data_vote[key])

    return max_dets
示例#3
0
    def get_bboxes_v1(self,
                      pred_hm_b1,
                      pred_hm_b2,
                      pred_wh_b1,
                      pred_wh_b2,
                      img_metas,
                      cfg,
                      rescale=False):
        topk = getattr(cfg, 'max_per_img', 100)
        heat_b1, inds_b1, clses_b1, scores_b1, bboxes_b1, xs_b1, ys_b1, wh_filter_b1 = \
            self.get_bboxes_single(pred_hm_b1, pred_wh_b1, self.down_ratio_b1, topk, idx=0)
        heat_b2, inds_b2, clses_b2, scores_b2, bboxes_b2, xs_b2, ys_b2, wh_filter_b2 = \
            self.get_bboxes_single(pred_hm_b2, pred_wh_b2, self.down_ratio_b2, topk, idx=1)

        result_list = []
        score_thr = getattr(cfg, 'score_thr', 0.01)
        if 'b2' not in self.inf_branch:
            bboxes = bboxes_b1
            scores = scores_b1
            clses = clses_b1
            wh_filter = wh_filter_b1
        elif 'b1' not in self.inf_branch:
            bboxes = bboxes_b2
            scores = scores_b2
            clses = clses_b2
            wh_filter = wh_filter_b2
        else:
            bboxes = torch.cat([bboxes_b1, bboxes_b2], dim=1)
            scores = torch.cat([scores_b1, scores_b2], dim=1)
            clses = torch.cat([clses_b1, clses_b2], dim=1)
            wh_filter = torch.cat([wh_filter_b1, wh_filter_b2], dim=1)

        for batch_i in range(bboxes.shape[0]):
            scores_per_img = scores[batch_i]
            wh_filter_per_img = wh_filter[batch_i]
            scores_keep = (scores_per_img >
                           score_thr).squeeze(-1) & wh_filter_per_img

            scores_per_img = scores_per_img[scores_keep]
            bboxes_per_img = bboxes[batch_i][scores_keep]
            labels_per_img = clses[batch_i][scores_keep].squeeze(-1)
            img_shape = img_metas[batch_i]['pad_shape']
            bboxes_per_img[:, 0::2] = bboxes_per_img[:, 0::2].clamp(
                min=0, max=img_shape[1] - 1)
            bboxes_per_img[:, 1::2] = bboxes_per_img[:, 1::2].clamp(
                min=0, max=img_shape[0] - 1)

            if rescale:
                scale_factor = img_metas[batch_i]['scale_factor']
                bboxes_per_img /= bboxes_per_img.new_tensor(scale_factor)

            if self.use_simple_nms:
                bboxes_per_img = torch.cat([bboxes_per_img, scores_per_img],
                                           dim=1)
            else:
                if self.nms_agnostic:
                    bboxes_per_img, ori_idx = soft_nms(torch.cat(
                        (bboxes_per_img, scores_per_img), dim=1),
                                                       iou_thr=0.95)
                    labels_per_img = labels_per_img[ori_idx]
                else:
                    labels_int_flatten = labels_per_img.int()
                    unique_cls_ids = list(
                        set(list(labels_int_flatten.cpu().numpy())))
                    bboxes_per_img_per_cls = bboxes_per_img.new_zeros((0, 5))
                    labels_per_img_per_cls = labels_int_flatten.new_zeros(
                        (0, ))
                    for cls_id in unique_cls_ids:
                        cls_id_idx = (labels_int_flatten == cls_id)
                        soft_bboxes, ori_idx = soft_nms(torch.cat(
                            (bboxes_per_img[cls_id_idx],
                             scores_per_img[cls_id_idx]),
                            dim=1),
                                                        iou_thr=0.6)
                        unique_labels = labels_int_flatten[cls_id_idx][ori_idx]
                        bboxes_per_img_per_cls = torch.cat(
                            (bboxes_per_img_per_cls, soft_bboxes), dim=0)
                        labels_per_img_per_cls = torch.cat(
                            (labels_per_img_per_cls, unique_labels))
                    bboxes_per_img = bboxes_per_img_per_cls
                    labels_per_img = labels_per_img_per_cls.float()

            labels_per_img = labels_per_img.squeeze(-1)
            result_list.append((bboxes_per_img, labels_per_img))

        return result_list
示例#4
0
    def get_bboxes(self,
                   pred_feat,
                   pred_heatmap,
                   pred_wh,
                   img_metas,
                   cfg,
                   rescale=False):
        batch, cat, height, width = pred_heatmap.size()
        pred_heatmap = pred_heatmap.detach().sigmoid_()
        wh = pred_wh.detach()
        # write_txt(pred_heatmap, filename='pred_hm', thre=0.001)
        # perform nms on heatmaps
        if self.use_simple_nms and not getattr(cfg, 'debug', False):
            heat = simple_nms(
                pred_heatmap)  # used maxpool to filter the max score
        else:
            heat = pred_heatmap
            kernel = 3
            pad = (kernel - 1) // 2
            hmax = nn.functional.max_pool2d(heat, (kernel, kernel),
                                            stride=1,
                                            padding=pad)
            keep = (hmax == heat).float()
            keep_pad = keep.new_zeros(batch, cat, height + 2, width + 2)
            keep_pad[..., 1:-1, 1:-1] = keep
            keep = keep_pad
            # keep = ((keep[..., :-2, :-2] + keep[..., :-2, 1:-1] + keep[..., :-2, 2:] +
            #          keep[..., 1:-1, :-2] + keep[..., 1:-1, 1:-1] + keep[..., 1:-1, 2:] +
            #          keep[..., 2:, :-2] + keep[..., 2:, 1:-1] + keep[..., 2:, 2:]) > 0).float()
            keep = ((keep[..., :-2, 1:-1] + keep[..., 1:-1, :-2] +
                     keep[..., 1:-1, 1:-1] + keep[..., 1:-1, 2:] +
                     keep[..., 2:, 1:-1]) > 0).float()
            heat = heat * keep

        topk = getattr(cfg, 'max_per_img', 100)
        # (batch, topk)
        scores, inds, clses, ys, xs = self._topk(heat, topk=topk)
        xs = xs.view(batch, topk, -1, 1) * self.down_ratio
        ys = ys.view(batch, topk, -1, 1) * self.down_ratio

        wh = wh.permute(0, 2, 3, 1).contiguous()
        wh = wh.view(wh.size(0), -1, wh.size(3))
        inds = inds.view(batch, -1, 1)
        wh_inds = inds.expand(*inds.shape[:-1], wh.size(2))
        wh = wh.gather(1, wh_inds)

        if not self.wh_agnostic:
            wh = wh.view(-1, topk, self.num_fg, 4)
            wh = torch.gather(
                wh, 2, clses[..., None, None].expand(clses.size(0),
                                                     clses.size(1), 1,
                                                     4).long())

        wh = wh.view(batch, topk, -1, 4)
        clses = clses.view(batch, topk, 1).long()
        scores = scores.view(batch, topk, 1)

        bboxes = torch.cat([
            xs - wh[..., [0]], ys - wh[..., [1]], xs + wh[..., [2]],
            ys + wh[..., [3]]
        ],
                           dim=-1)
        if self.aug_reg:
            heat = pred_heatmap.permute(0, 2, 3, 1).contiguous()
            heat = heat.view(heat.size(0), -1, heat.size(3))
            score_inds = inds.expand(*inds.shape[:-1], heat.size(2))
            area_scores = heat.gather(1,
                                      score_inds).view(batch, topk, -1,
                                                       self.num_fg)
            area_scores = area_scores.gather(
                -1,
                clses.expand(*clses.shape[:-1],
                             area_scores.size(-2)).unsqueeze(-1)).squeeze(-1)

            bbox_weight = torch.cat([
                bboxes.new_ones((*bboxes.shape[:-2], 1)),
                torch.exp(-1 / (2 * (wh[..., 0, :] / 24)**2))
            ],
                                    dim=-1) * area_scores
            # print(bbox_weight)
            bboxes = (bboxes * bbox_weight.unsqueeze(-1)
                      ).sum(-2) / bbox_weight.sum(-1, keepdims=True)
        else:
            bboxes = bboxes.squeeze(-2)

        clses = clses.float()
        roi_boxes = bboxes.new_tensor([])
        if self.two_stage:
            for batch_i in range(bboxes.shape[0]):
                vaid_pre_boxes_i = bboxes[batch_i]  # (xx, 4)
                roi_boxes = torch.cat([
                    roi_boxes,
                    torch.cat([
                        vaid_pre_boxes_i.new_ones(
                            [vaid_pre_boxes_i.size(0), 1]) * batch_i,
                        vaid_pre_boxes_i
                    ],
                              dim=1)
                ],
                                      dim=0)

            if roi_boxes.size(0) > 0:
                rois = self.align(pred_feat, roi_boxes)  # (n, cha, 7, 7)
                pred_wh2 = self.wh2(rois).view(-1, 4)
                bboxes = bboxes.view(-1, 4)
                bboxes[:,
                       [0, 1]] = bboxes[:, [0, 1]] - pred_wh2[:, [0, 1]] * 16
                bboxes[:,
                       [2, 3]] = bboxes[:, [2, 3]] + pred_wh2[:, [2, 3]] * 16
                bboxes = bboxes.view(batch, topk, 4)

        result_list = []
        score_thr = getattr(cfg, 'score_thr', 0.01)
        for batch_i in range(bboxes.shape[0]):
            scores_per_img = scores[batch_i]
            scores_keep = (scores_per_img > score_thr).squeeze(-1)

            scores_per_img = scores_per_img[scores_keep]
            bboxes_per_img = bboxes[batch_i][scores_keep]
            labels_per_img = clses[batch_i][scores_keep].squeeze(-1)
            img_shape = img_metas[batch_i]['pad_shape']
            bboxes_per_img[:, 0::2] = bboxes_per_img[:, 0::2].clamp(
                min=0, max=img_shape[1] - 1)
            bboxes_per_img[:, 1::2] = bboxes_per_img[:, 1::2].clamp(
                min=0, max=img_shape[0] - 1)

            if rescale:
                scale_factor = img_metas[batch_i]['scale_factor']
                bboxes_per_img /= bboxes_per_img.new_tensor(scale_factor)

            if self.use_simple_nms:
                bboxes_per_img = torch.cat([bboxes_per_img, scores_per_img],
                                           dim=1)
            else:
                labels_int_flatten = labels_per_img.int()
                unique_cls_ids = list(
                    set(list(labels_int_flatten.cpu().numpy())))
                bboxes_per_img_per_cls = bboxes_per_img.new_zeros((0, 5))
                labels_per_img_per_cls = labels_int_flatten.new_zeros((0, ))
                for cls_id in unique_cls_ids:
                    cls_id_idx = (labels_int_flatten == cls_id)
                    soft_bboxes, ori_idx = soft_nms(torch.cat(
                        (bboxes_per_img[cls_id_idx],
                         scores_per_img[cls_id_idx]),
                        dim=1),
                                                    iou_thr=0.6)
                    unique_labels = labels_int_flatten[cls_id_idx][ori_idx]
                    bboxes_per_img_per_cls = torch.cat(
                        (bboxes_per_img_per_cls, soft_bboxes), dim=0)
                    labels_per_img_per_cls = torch.cat(
                        (labels_per_img_per_cls, unique_labels))
                bboxes_per_img = bboxes_per_img_per_cls
                labels_per_img = labels_per_img_per_cls.float()

            result_list.append((bboxes_per_img, labels_per_img))

        return result_list