示例#1
0
import os
import sys
sys.path.append(
    os.path.dirname(
        os.path.abspath(
            os.path.dirname(os.path.abspath(os.path.dirname(__file__))))))

from mmdetection.mmdet.models import build_detector
from mmdetection.mmdet.apis import inference_detector, show_result

cfg = mmcv.Config.fromfile('configs/faster_rcnn_r50_fpn_1x.py')
cfg.model.pretrained = None

# construct the model and load checkpoint
model = build_detector(cfg.model, test_cfg=cfg.test_cfg)
_ = load_checkpoint(
    model,
    'https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth'
)

# test a single image
img = mmcv.imread('test.jpg')
result = inference_detector(model, img, cfg)
show_result(img, result)

# test a list of images
# imgs = ['test1.jpg', 'test2.jpg']
# for i, result in enumerate(inference_detector(model, imgs, cfg, device='cuda:0')):
#     print(i, imgs[i])
#     show_result(imgs[i], result)
示例#2
0
def main():
    args = parse_args()

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = mmcv.Config.fromfile(args.config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True

    dataset = obj_from_dict(cfg.data.test, datasets, dict(test_mode=True))
    if args.gpus == 1:
        model = build_detector(
            cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
        load_checkpoint(model, args.checkpoint)
        model = MMDataParallel(model, device_ids=[0])

        data_loader = build_dataloader(
            dataset,
            imgs_per_gpu=1,
            workers_per_gpu=cfg.data.workers_per_gpu,
            num_gpus=1,
            dist=False,
            shuffle=False)
        outputs = single_test(model, data_loader, args.show)
    else:
        model_args = cfg.model.copy()
        model_args.update(train_cfg=None, test_cfg=cfg.test_cfg)
        model_type = getattr(detectors, model_args.pop('type'))
        outputs = parallel_test(
            model_type,
            model_args,
            args.checkpoint,
            dataset,
            _data_func,
            range(args.gpus),
            workers_per_gpu=args.proc_per_gpu)

    if args.out:
        print('writing results to {}'.format(args.out))
        mmcv.dump(outputs, args.out)
        eval_types = args.eval
        if eval_types:
            print('Starting evaluate {}'.format(' and '.join(eval_types)))
            if eval_types == ['proposal_fast']:
                result_file = args.out
                coco_eval(result_file, eval_types, dataset.coco)
            else:
                if not isinstance(outputs[0], dict):
                    result_file = args.out + '.json'
                    results2json(dataset, outputs, result_file)
                    coco_eval(result_file, eval_types, dataset.coco)
                else:
                    for name in outputs[0]:
                        print('\nEvaluating {}'.format(name))
                        outputs_ = [out[name] for out in outputs]
                        result_file = args.out + '.{}.json'.format(name)
                        results2json(dataset, outputs_, result_file)
                        coco_eval(result_file, eval_types, dataset.coco)
示例#3
0
def evaluate_model(model_name, paper_arxiv_id, weights_url, weights_name,
                   paper_results, config):
    print('---')
    print('Now Evaluating %s' % model_name)

    evaluator = COCOEvaluator(root='./.data/vision/coco',
                              model_name=model_name,
                              paper_arxiv_id=paper_arxiv_id,
                              paper_results=paper_results)

    out = 'results.pkl'
    launcher = 'none'

    if out is not None and not out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = mmcv.Config.fromfile(config)
    cfg.data.test[
        'ann_file'] = './.data/vision/coco/annotations/instances_val2017.json'
    cfg.data.test['img_prefix'] = './.data/vision/coco/val2017/'

    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    if launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(launcher, **cfg.dist_params)

    # build the dataloader
    # TODO: support multiple images per gpu (only minor changes are needed)
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(dataset,
                                   imgs_per_gpu=1,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    # build the model and load checkpoint
    model = build_detector(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)

    local_checkpoint, _ = urllib.request.urlretrieve(
        weights_url, '%s/.cache/torch/%s' % (str(Path.home()), weights_name))

    print(local_checkpoint)

    # '/home/ubuntu/GCNet/mask_rcnn_r50_fpn_1x_20181010-069fa190.pth'
    checkpoint = load_checkpoint(model, local_checkpoint, map_location='cpu')

    # old versions did not save class info in checkpoints, this walkaround is
    # for backward compatibility
    if 'CLASSES' in checkpoint['meta']:
        model.CLASSES = checkpoint['meta']['CLASSES']
    else:
        model.CLASSES = dataset.CLASSES

    evaluator.reset_time()

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs, cache_exists = single_gpu_test(model, data_loader, False,
                                                evaluator)
    else:
        model = MMDistributedDataParallel(model.cuda())
        outputs = multi_gpu_test(model, data_loader, args.tmpdir)

    if cache_exists:
        print('Cache exists: %s' % (evaluator.batch_hash))
        evaluator.save()

    else:
        from mmdetection.mmdet.core import results2json

        rank, _ = get_dist_info()
        if out and rank == 0:
            print('\nwriting results to {}'.format(out))
            mmcv.dump(outputs, out)
            eval_types = ['bbox']
            if eval_types:
                print('Starting evaluate {}'.format(' and '.join(eval_types)))
                if eval_types == ['proposal_fast']:
                    result_file = out
                else:
                    if not isinstance(outputs[0], dict):
                        result_files = results2json(dataset, outputs, out)
                    else:
                        for name in outputs[0]:
                            print('\nEvaluating {}'.format(name))
                            outputs_ = [out[name] for out in outputs]
                            result_file = out + '.{}'.format(name)
                            result_files = results2json(
                                dataset, outputs_, result_file)
        anns = json.load(open(result_files['bbox']))
        evaluator.detections = []
        evaluator.add(anns)
        evaluator.save()
示例#4
0
def main():
    args = parse_args()

    cfg = Config.fromfile(args.config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    # update configs according to CLI args
    if args.work_dir is not None:
        cfg.work_dir = args.work_dir
    if args.resume_from is not None:
        cfg.resume_from = args.resume_from
    cfg.gpus = args.gpus
    if cfg.checkpoint_config is not None:
        # save mmdet version in checkpoints as meta data
        cfg.checkpoint_config.meta = dict(mmdet_version=__version__,
                                          config=cfg.text)

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # init logger before other steps
    logger = get_root_logger(cfg.log_level)
    logger.info('Distributed training: {}'.format(distributed))

    # set random seeds
    if args.seed is not None:
        logger.info('Set random seed to {}'.format(args.seed))
        set_random_seed(args.seed)

    model = build_detector(cfg.model,
                           train_cfg=cfg.train_cfg,
                           test_cfg=cfg.test_cfg)

    # 불필요한 loss 와 학습에서 제외 할 때 사용
    if 'no_train_modules' in cfg.train_cfg:
        no_train_modules = cfg.train_cfg.no_train_modules
        if len(no_train_modules) != 0:
            for param in model.backbone.parameters():
                param.requires_grad = False
            for param in model.neck.parameters():
                param.requires_grad = False

        if 'rpn_haed' in no_train_modules:
            for param in model.rpn_head.parameters():
                param.requires_grad = False
        elif 'bbox_head' in no_train_modules:
            for param in model.bbox_head.parameters():
                param.requires_grad = False
        elif 'mask_head' in no_train_modules and hasattr(
                cfg.model, 'mask_head'):
            for param in model.mask_head.parameters():
                param.requires_grad = False

    train_dataset = get_dataset(cfg.data.train)

    from imgaug import augmenters as iaa
    # augmentation = iaa.Sequential([
    #     iaa.Fliplr(0.5),
    #     # iaa.Invert(0.5),
    #     iaa.Affine(
    #         scale={"x": (0.7, 1.0), "y": (0.7, 1.0)},
    #         translate_percent={"x": (-0.05, 0.05), "y": (-0.05, 0.05)},
    #     ),
    #     iaa.Multiply((0.5, 1.0))
    # ], random_order=True)

    augmentation = iaa.SomeOf(
        (0, None),
        [
            iaa.Fliplr(0.5),
            # iaa.Invert(0.5),
            iaa.Affine(
                scale={
                    "x": (0.7, 1.0),
                    "y": (0.7, 1.0)
                },
                translate_percent={
                    "x": (-0.05, 0.05),
                    "y": (-0.05, 0.05)
                },
            ),
            iaa.Multiply((0.4, 1.0))
        ])

    train_dataset.set_augmentation(augmentation)

    train_detector(model,
                   train_dataset,
                   cfg,
                   distributed=distributed,
                   validate=args.validate,
                   logger=logger)