def __init__(self, model_config, weightfile, yolo): super(DarknetParser, self).__init__() if not os.path.exists(model_config): raise ValueError( 'Darknet model config [{}] can not be found!'.format( model_config)) if weightfile: self.weight_loaded = True fp = open(weightfile, 'rb') header = np.fromfile(fp, count=4, dtype=np.int32) self.buf = np.fromfile(fp, dtype=np.float32) print("weights buf size: {}".format(self.buf.size)) fp.close() if yolo == "1": self.start = 1 #yolov2 else: self.start = 0 #yolov3 resnet model = parse_cfg(model_config) self.dk_graph = DarknetGraph(model) self.dk_graph.build()
def __init__(self, model_config, weightfile): super(DarknetParser, self).__init__() if not os.path.exists(model_config): raise ValueError( 'Darknet model config [{}] can not be found!'.format( model_config)) # model = _cntk.Function.load(model) # print(model_config) if weightfile: # print(weight) self.weight_loaded = True # net_info = cfg2prototxt(model_config) # print(net_info) # save_prototxt(net_info , 'resnet50.prototxt', region=False) # net = caffe.Net('resnet50.prototxt', caffe.TEST) # params = net.params # print(params) fp = open(weightfile, 'rb') header = np.fromfile(fp, count=4, dtype=np.int32) self.buf = np.fromfile(fp, dtype=np.float32) print(self.buf.size) fp.close() self.start = 1 model = parse_cfg(model_config) # print(model) self.dk_graph = DarknetGraph(model) self.dk_graph.build()