示例#1
0
    def after_train_iter(self, runner):
        """The behavior after each train iteration.

        Args:
            runner (``mmcv.runner.BaseRunner``): The runner.
        """
        if not self.every_n_iters(runner, self.interval):
            return
        runner.log_buffer.clear()
        from mmedit.apis import multi_gpu_test
        results = multi_gpu_test(runner.model,
                                 self.dataloader,
                                 tmpdir=osp.join(runner.work_dir,
                                                 '.eval_hook'),
                                 gpu_collect=self.gpu_collect,
                                 save_image=self.save_image,
                                 save_path=self.save_path,
                                 iteration=runner.iter)
        if runner.rank == 0:
            print('\n')
            self.evaluate(runner, results)
示例#2
0
def main():
    args = parse_args()

    cfg = mmcv.Config.fromfile(args.config)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    cfg.model.pretrained = None

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    rank, _ = get_dist_info()

    # set random seeds
    if args.seed is not None:
        if rank == 0:
            print('set random seed to', args.seed)
        set_random_seed(args.seed, deterministic=args.deterministic)

    # build the dataloader
    # TODO: support multiple images per gpu (only minor changes are needed)
    dataset = build_dataset(cfg.data.test)

    loader_cfg = {
        **dict((k, cfg.data[k]) for k in ['workers_per_gpu'] if k in cfg.data),
        **dict(samples_per_gpu=1,
               drop_last=False,
               shuffle=False,
               dist=distributed),
        **cfg.data.get('test_dataloader', {})
    }

    data_loader = build_dataloader(dataset, **loader_cfg)

    # build the model and load checkpoint
    model = build_model(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)

    args.save_image = args.save_path is not None
    empty_cache = cfg.get('empty_cache', False)
    if not distributed:
        _ = load_checkpoint(model, args.checkpoint, map_location='cpu')
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model,
                                  data_loader,
                                  save_path=args.save_path,
                                  save_image=args.save_image)
    else:
        find_unused_parameters = cfg.get('find_unused_parameters', False)
        model = DistributedDataParallelWrapper(
            model,
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False,
            find_unused_parameters=find_unused_parameters)

        device_id = torch.cuda.current_device()
        _ = load_checkpoint(
            model,
            args.checkpoint,
            map_location=lambda storage, loc: storage.cuda(device_id))
        outputs = multi_gpu_test(model,
                                 data_loader,
                                 args.tmpdir,
                                 args.gpu_collect,
                                 save_path=args.save_path,
                                 save_image=args.save_image,
                                 empty_cache=empty_cache)

    if rank == 0:
        print('')
        # print metrics
        stats = dataset.evaluate(outputs)
        for stat in stats:
            print('Eval-{}: {}'.format(stat, stats[stat]))

        # save result pickle
        if args.out:
            print('writing results to {}'.format(args.out))
            mmcv.dump(outputs, args.out)
示例#3
0
def main():
    args = parse_args()

    checkpoint_list = os.listdir(args.checkpoint_dir)

    print(checkpoint_list)

    for checkpoint in checkpoint_list:
        if '.pth' in checkpoint:

            cfg = mmcv.Config.fromfile(args.config)
            # set cudnn_benchmark
            if cfg.get('cudnn_benchmark', False):
                torch.backends.cudnn.benchmark = True
            cfg.model.pretrained = None

            # init distributed env first, since logger depends on the dist info.
            if args.launcher == 'none':
                distributed = False
            else:
                distributed = True
                init_dist(args.launcher, **cfg.dist_params)

            rank, _ = get_dist_info()

            # set random seeds
            if args.seed is not None:
                if rank == 0:
                    print('set random seed to', args.seed)
                set_random_seed(args.seed, deterministic=args.deterministic)

            # build the dataloader
            # TODO: support multiple images per gpu (only minor changes are needed)
            dataset = build_dataset(cfg.data.test)
            data_loader = build_dataloader(dataset,
                                           samples_per_gpu=1,
                                           workers_per_gpu=cfg.data.get(
                                               'val_workers_per_gpu',
                                               cfg.data.workers_per_gpu),
                                           dist=distributed,
                                           shuffle=False)

            # build the model and load checkpoint
            model = build_model(cfg.model,
                                train_cfg=None,
                                test_cfg=cfg.test_cfg)

            args.save_image = args.save_path is not None

            # distributed test
            find_unused_parameters = cfg.get('find_unused_parameters', False)
            model = DistributedDataParallelWrapper(
                model,
                device_ids=[torch.cuda.current_device()],
                broadcast_buffers=False,
                find_unused_parameters=find_unused_parameters)

            device_id = torch.cuda.current_device()

            _ = load_checkpoint(
                model,
                os.path.join(args.checkpoint_dir, checkpoint),
                map_location=lambda storage, loc: storage.cuda(device_id))

            outputs = multi_gpu_test(model,
                                     data_loader,
                                     args.tmpdir,
                                     args.gpu_collect,
                                     save_path=args.save_path,
                                     save_image=args.save_image)

            if rank == 0:
                # print metrics
                stats = dataset.evaluate(outputs)
                write_file = open(
                    os.path.join(args.checkpoint_dir, 'eval_result_new.txt'),
                    'a')
                for stat in stats:
                    print('{}: Eval-{}: {}'.format(checkpoint, stat,
                                                   stats[stat]))
                    write_file.write('{}: Eval-{}: {} '.format(
                        checkpoint, stat, stats[stat]))
                write_file.write('\n')
                write_file.close()
                # save result pickle
                if args.out:
                    print('writing results to {}'.format(args.out))
                    mmcv.dump(outputs, args.out)