def loss_boxes(self, outputs, targets, indices, num_boxes): """Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4] The target boxes are expected in format (center_x, center_y, h, w), normalized by the image size. """ assert "pred_boxes" in outputs idx = self._get_src_permutation_idx(indices) src_boxes = outputs["pred_boxes"][idx] target_boxes = torch.cat( [t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0) loss_bbox = F.l1_loss(src_boxes, target_boxes, reduction="none") losses = {} losses["loss_bbox"] = loss_bbox.sum() / num_boxes loss_giou = 1 - torch.diag( box_ops.generalized_box_iou( box_ops.box_cxcywh_to_xyxy(src_boxes).float(), box_ops.box_cxcywh_to_xyxy(target_boxes), )) losses["loss_giou"] = loss_giou.sum() / num_boxes return losses
def forward(self, outputs: Dict[str, Tensor], target_sizes: Tensor): out_logits, out_bbox = outputs["pred_logits"], outputs["pred_boxes"] assert len(out_logits) == len(target_sizes) assert target_sizes.shape[1] == 2 prob = F.softmax(out_logits, -1) scores, labels = prob[..., :-1].max(-1) # convert to [x0, y0, x1, y1] format from mmf.utils.box_ops import box_cxcywh_to_xyxy boxes = box_cxcywh_to_xyxy(out_bbox) # and from relative [0, 1] to absolute [0, height] coordinates img_h, img_w = target_sizes.unbind(1) scale_fct = torch.stack([img_w, img_h, img_w, img_h], dim=1) boxes = boxes * scale_fct[:, None, :] results = [{ "scores": s, "labels": l, "boxes": b } for s, l, b in zip(scores, labels, boxes)] if "attr_logits" in outputs: assert len(outputs["attr_logits"]) == len(results) attr_scores, attr_labels = outputs["attr_logits"].max(-1) for idx, r in enumerate(results): r["attr_scores"] = attr_scores[idx] r["attr_labels"] = attr_labels[idx] return results
def forward(self, outputs: Dict[str, Tensor], targets: List[Dict[str, Tensor]]): """ Performs the matching Params: outputs: This is a dict that contains at least these entries: "pred_logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates targets: This is a list of targets (len(targets) = batch_size), where each target is a dict containing: "labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of ground-truth objects in the target) containing the class labels "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates Returns: A list of size batch_size, containing tuples of (index_i, index_j) where: - index_i is the indices of the selected predictions (in order) - index_j is the indices of the corresponding selected targets (in order) For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) """ bs, num_queries = outputs["pred_logits"].shape[:2] # We flatten to compute the cost matrices in a batch out_prob = self.norm(outputs["pred_logits"].flatten( 0, 1)) # [batch_size * num_queries, num_classes] out_bbox = outputs["pred_boxes"].flatten( 0, 1) # [batch_size * num_queries, 4] # Also concat the target labels and boxes tgt_ids = torch.cat([v["labels"] for v in targets]) tgt_bbox = torch.cat([v["boxes"] for v in targets]) # Compute the classification cost. Contrary to the loss, we don't use the NLL, # but approximate it in 1 - proba[target class]. # The 1 is a constant that doesn't change the matching, it can be omitted. cost_class = -out_prob[:, tgt_ids] # Compute the L1 cost between boxes cost_bbox = torch.cdist(out_bbox, tgt_bbox, p=1) # Compute the giou cost betwen boxes cost_giou = -generalized_box_iou( box_cxcywh_to_xyxy(out_bbox).float(), box_cxcywh_to_xyxy(tgt_bbox)) # Final cost matrix C = (self.cost_bbox * cost_bbox + self.cost_class * cost_class + self.cost_giou * cost_giou) C = C.view(bs, num_queries, -1).cpu() sizes = [len(v["boxes"]) for v in targets] indices = [ linear_sum_assignment(c[i]) for i, c in enumerate(C.split(sizes, -1)) ] return [( torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64), ) for i, j in indices]