def cocode(i, gc_ref):
    syn0 = 0
    if gc_ref:
        gc_list = gc(gc_ref)
        if len(gc_list): syn0 = gc_list[0]
    c = Cocode(i)
    return c.syndrome_list(syn0)
示例#2
0
def subtype_testdata():
    yield XLeech2(~PLoop())
    yield XLeech2(Cocode([0, 1, 2, 3]))
    yield XLeech2(~PLoop(list(range(8))))
    yield XLeech2(~PLoop(list(range(8))), Cocode([8, 9]))
    for i in range(50):
        yield XLeech2('r', 4)
示例#3
0
def test_parity():
    odd, even = Parity(3), Parity(-4)
    assert odd != even
    assert Parity(-311) == odd
    assert int(odd) == 1
    assert int(even) == 0
    assert (-1)**odd == -1
    assert (-1)**even == 1
    assert 1**odd == 1**even == 1
    assert odd + 1 == odd - 1 == 1 + odd == odd + odd == 7 - odd == even
    assert odd * odd == -odd == odd
    assert odd * even == even * odd == 2 * odd == even * 3 == even
    print("\nPossible parities are:", odd, ",", even)
    with pytest.raises(ValueError):
        2**even
    with pytest.raises(TypeError):
        even & even
    cc1, cc0 = Cocode(0x823), Cocode(0x7ef)
    assert cc1 + even == even + cc1 == cc0 + odd == odd + cc0 == odd
    assert cc1 + odd == odd + cc1 == cc0 + even == even + cc0 == even
    assert odd * cc1 == cc1 * odd == cc1
    ccn = Cocode(0)
    assert even * cc1 == cc1 * even == even * cc0 == cc0 * even == ccn
    pl = PLoop(0x1234)
    gc = GCode(pl)
    assert even * pl == even * gc == GCode(0)
    assert odd * pl == odd * gc == gc
    aut = AutPL('e', 'r')
    assert odd * aut == odd
    assert even * aut == even
示例#4
0
def test_create_group_permutation():
    for i, (src, dest, num) in enumerate(create_perm_testvectors()):
        p1 = AutPL(0, zip(src, dest))
        p1.check()
        p1c = p1.copy().check()
        assert p1c == p1
        assert p1.perm_num == num
        assert p1 == AutPL(0, dict(zip(src, dest))).check()
        assert p1 == AutPL(0, num).check()
        assert p1 == AutPL(p1).check()
        assert p1.cocode == 0
        perm = p1.perm
        assert isinstance(perm, list)
        assert min(perm) == 0 and max(perm) == 23
        for x, y in zip(src, dest):
            assert perm[x] == y
        assert p1 == AutPL(0, perm)
        coc = Cocode(randint(1, 0xfff))
        p2 = AutPL(coc, 0) * AutPL(0, perm)
        p2.check()
        assert p2 == (AutPL(coc) * AutPL(0, perm)).check()
        assert p2 == AutPL(coc, perm).check()
        assert p2 != p1
        assert p2.perm_num == p1.perm_num
        assert p2.cocode == coc.cocode
        p2c = AutPL(0, perm) * AutPL(coc, 0).check()
        assert p2.perm_num == p1.perm_num
        assert Cocode(p2c.cocode) * p2 == coc
        assert p2 == AutPL(Cocode(p2.cocode), 0) * AutPL(0, p2.perm)
示例#5
0
def eval_a_testdata():
    data = [
        (V("A", 2, 2), Cocode([2, 3]).ord, 0),
    ]
    for d in data:
        yield d
    for i0 in range(24):
        for i1 in range(i0):
            yield V('R'), Cocode([i0, i1]).ord, 0
    for k in range(100):
        yield V('R'), rand_leech2(), 0
    for e in (1, 2):
        for k in range(100):
            yield V('R'), rand_leech2(), e
示例#6
0
def calc_conjugate_to_opp(i0, i1):
    coc = Cocode([i0, i1])
    g = G('d', coc)
    v = V15('I', i0, i1)
    coc_value = coc.ord
    x = PLoop(coc_value & -coc_value)
    return G('x', x)
示例#7
0
def display_leech_vector(x):
    """Display a vector in the Leech lattice mod 2

    Here parameter ``x`` is a vector in the Leech lattice mod 2
    in Leech lattice encoding.
    """
    gcode = PLoop(x >> 12)
    bl = gcode.bit_list
    print("GCode:\n", bl)
    if len(bl) == 16:
        l = [x for x in range(24) if not x in bl]
        pos = bl[0]
    elif len(gcode):
        pos = bl[0]
    else:
        pos = 0
    cocode = Cocode(x) + gcode.theta()
    print("Cocode:", cocode.syndrome_list(pos))
示例#8
0
def xs_vector(ploop, cocode):
    """Convert entry of table TYPE_DATA to a Leech lattice vector

    Calling ``xs_vector(ploop, cocode)``, where ``ploop`` and
    ``cocode`` are taken from an entry of the list TYPE_DATA,
    returns the vector in the Leech lattice mod 2 corresponding
    to that entry in Leech lattice encoding.
    """
    return Xsp2_Co1([("x", ploop), ("d", Cocode(cocode))]).as_xsp()
示例#9
0
def test_group_from_perm(n_cases):
    for i in range(n_cases):
        h1 = rand_u7()
        h2 = rand_u7()
        autp = AutPL(0, zip(h1, h2))
        assert autp == AutPL(0, dict(zip(h1, h2)))
        assert autp.perm == mat24.perm_from_heptads(h1, h2)
        assert autp.cocode == 0
        perm_num = autp.perm_num
        assert perm_num == mat24.perm_to_m24num(autp.perm)
        assert autp == AutPL(0, mat24.perm_from_heptads(h1, h2))
        assert autp == AutPL(autp)
        assert autp == AutPL(0, autp.perm_num)
        assert autp == AutPL(0, zip(h1, h2))
        coc_num = randint(1, 0xfff)
        coc = Cocode(coc_num)
        assert coc != Cocode(0)
        assert coc.cocode == coc_num
        im_coc = coc * autp
        assert type(im_coc) == type(coc)
        assert AutPL(im_coc) == AutPL(coc)**autp
        aut_cp = AutPL(coc) * autp
        assert aut_cp == AutPL(coc_num, perm_num)
        if coc_num and perm_num:
            assert aut_cp.as_tuples() == [('d', coc_num), ('p', perm_num)]
        assert autp * AutPL(im_coc) == aut_cp
        assert type(aut_cp) == type(autp)
        assert aut_cp.perm_num == perm_num
        assert aut_cp.cocode == coc_num
        assert Parity(aut_cp) == Parity(coc)
        assert aut_cp.parity == coc.parity == Parity(coc).ord
        assert autp == AutPL() * autp == autp * AutPL()
        with pytest.raises(TypeError):
            autp * coc
        with pytest.raises(TypeError):
            autp * Parity(randint(0, 9))
        with pytest.raises(TypeError):
            autp * randint(2, 9)
        with pytest.raises(TypeError):
            randint(2, 9) * autp
        with pytest.raises(TypeError):
            autp * PLoop(randint(0, 0x1fff))
示例#10
0
def test_ABC(n_cases):
    for p in characteristics():
        sp = space(p)
        for _ in range(n_cases):
            i1 = i0 = randint(0, 23)
            while i1 == i0:
                i1 = randint(0, 23)
            scalar = randint(1, p-1) + p * randint(-5, 5)
            for tag in "ABC":
                c0 = Cocode([i0])
                c1 = Cocode([i1])
                v0 = GcVector([i0])
                v1 = GcVector([i1])
                ref = sp(tag, i0, i1)
                for j0 in [i0, c0, v0]:
                    for j1 in [i1, c1, v1]:
                        assert sp(tag, j0, j1) ==  ref
                        mmv = sp()
                        mmv[tag, j0, j1] =  scalar
                        assert mmv == scalar * ref
                        assert mmv[tag, j0, j1] == scalar % p
示例#11
0
def test_cocode():
    print("")
    for i in range(200):
        # Test power map, inveriosn, sign, theta, and conversion to GCode
        n1 = randint(0, 0x1fff)
        p1 = PLoop(n1)
        ccvector = randint(0, 0xffffff)
        coc = mat24.vect_to_cocode(ccvector)
        cclist = [i for i in range(24) if (ccvector >> i) & 1]
        cc1 = Cocode(cclist)
        cc2 = Cocode(coc)
        if i < 1:
            print("\nTesting", GcVector(ccvector), ", cocode =", cc1)
        assert cc1 == cc2
        u = Parity(mat24.scalar_prod(p1.value, cc1.value))
        assert p1 & cc1 == u == cc1 & p1 == u * 1 == u + 0
        par = Parity(randint(0, 1))
        assert cc1 + par == par + cc1 == cc1.value // 0x800 + par
        assert cc1 % 2 == Parity(cc1)
        assert len(cc1) == mat24.cocode_weight(cc1.value)
        if len(cc1) < 4:
            syndrome = mat24.cocode_syndrome(cc1.value)
            assert cc1.syndrome().value == syndrome
            syn_from_list = sum(1 << i
                                for i in GcVector(ccvector).syndrome_list())
            assert syn_from_list == syndrome
        i = randint(0, 23)
        assert cc1.syndrome(i).value == mat24.cocode_syndrome(cc1.value, i)
        syndrome_list = cc1.syndrome(i).bit_list
        assert len(cc1) == len(syndrome_list)
        assert syndrome_list == mat24.cocode_to_bit_list(cc1.value, i)
示例#12
0
def test_T(n_cases):
    for p in characteristics():
        sp = space(p)
        for _ in range(n_cases):            
            o = randint(0, 758)
            so = randint(0, 63)
            coc = Cocode(SubOctad(o, so))
            v = GcVector (coc.syndrome(randint(0,23)))
            sgn = randint(0, 1)
            pl = PLoopZ(sgn) * Octad(o)
            gc = GCode(pl)
            scalar = randint(1, p-1) + p * randint(-5, 5)
            assert gc == GCode(pl)
            ref = (-1)**sgn * sp('T', o, so)
            for sign, d in ((sgn,o), (sgn,gc), (0, pl)):
                for par2 in (so, coc, v):
                    assert (-1)**sign * sp('T', d, par2) == ref
                    mmv = sp()
                    mmv['T', d, par2] = (-1)**sign * scalar
                    assert mmv == scalar * ref
                    signed_scalar = (-1)**sign * scalar % p
                    assert mmv['T', d, par2] == signed_scalar
示例#13
0
def solve_gcode_diag(l):
    """Solve cocode equation

    Here ``l`` is a list of tupeles ``(i0, i1, k)``.  For an
    unknown Golay code word ``x``, each tuple means an equation
    ``<x, Cocode([i0,i1])> = k``, where ``<.,.>`` is the scalar
    product. If a solution ``x`` exists then the function
    returns ``x`` as an instance of class |PLoop|.
    """
    a = np.zeros(len(l), dtype=np.uint64)
    for i, (i0, i1, k) in enumerate(l):
        a[i] = Cocode([i0, i1]).ord + ((int(k) & 1) << 12)
    v = bitmatrix64_solve_equation(a, len(l), 12)
    if v < 0:
        err = "Off-diagonal matrix equation has no solution"
        raise ValueError(err)
    result = PLoop(v)
    for i0, i1, k in l:
        c = Cocode([i0, i1])
        check = hex(result.ord), hex(c.ord), k
        assert result & c == Parity(int(k)), check
    return result
示例#14
0
def test_group_op(n_cases=100):
    print("")
    for i in range(n_cases):
        p1 = AutPL('r', 'r')
        p2 = rand_autpl_u7()
        p2 *= AutPL(Cocode(randint(0, 0xfff)))
        p12 = (p1 * p2).check()
        assert p12.rep == mat24.mul_autpl(p1.rep, p2.rep)
        if i < 1:
            print(p1, "*", p2, "=", p12)
        p3 = AutPL('r', 'r')
        assert (p1 * p2) * p3 == p1 * (p2 * p3)
        p1i = (p1**-1).check()
        assert p1 * p1i == p1i * p1 == AutPL()
示例#15
0
def test_autploop(n_cases):
    for i in range(n_cases):
        autp = AutPL('r', 'r')
        g = group(autp)
        assert g ==  group([('d', autp.cocode), ('p',  autp.perm)])
        assert g ==  group('p',  autp)
        coc, p_num = autp.cocode, autp.perm_num
        if coc and p_num:
            assert g.as_tuples() == autp.as_tuples() 
            assert g.as_tuples() == [('d', coc), ('p', p_num)] 
        Coc = Cocode(coc)
        h1 = range(9, 18)
        h2 = autp.perm[9:18]
        assert g ==  group([('d', Coc), ('p',  zip(h1, h2))])    
        assert g ==  group([('d', Coc), ('p',  dict(zip(h1, h2)))])    
示例#16
0
def map_cooctad(i):
    """Return a certain perumtation in the Mathieu group M_24

    The function returns a permutation in the  Mathieu group 
    ``M_24`` that fixes the octad (0,1,...,7) as a set, and the
    element 8, and that maps i to 9.

    The permutation is returned as an instance of class AutPL
    """
    if not 9 <= i < 24:
        raise ValueError("Bad paramter for function map_octad()")
    if i == 9:
        return AutPL(0)
    s0 = [0] + Cocode([0, 8, 9, i, i ^ 1]).syndrome_list()
    s1 = [x for x in range(8) if not x in s0]
    src = s0 + s1[:1] + [8, i]
    dest = [0, 1, 2, 3, 4, 8, 9]
    return AutPL(0, zip(src, dest), 0)
示例#17
0
def iter_d(tag, d):
    if isinstance(d, Integral):
        yield 0x10000000 + (d & 0xfff)
    elif isinstance(d, str):
        cocode = randint(d == 'n', 0xfff)
        if d == "o":
            cocode |= 1
        elif d == "e":
            cocode &= ~1
        if len(d) == 1 and d in "rnoe":
            yield 0x10000000 + (cocode & 0xfff)
        else:
            raise ValueError(ERR_ATOM_VALUE % 'd')
    else:
        try:
            cocode = Cocode(d).cocode
            yield 0x10000000 + (cocode & 0xfff)
        except:
            raise TypeError(ERR_ATOM_TYPE % (type(d), 'd'))
示例#18
0
def test_octads():
    print("")
    OMEGA = ~PLoop(0)
    for i in range(200):
        no = randint(0, 758)
        o = Octad(no)
        assert o == PLoop(mat24.octad_to_gcode(no))
        assert o == Octad(sample(o.bit_list, 5))
        assert o.octad == no
        o_signbit, o_cpl = randint(0, 1), randint(0, 1)
        signed_o = PLoopZ(o_signbit, o_cpl) * o
        assert signed_o.octad == no
        assert signed_o.sign == (-1)**o_signbit
        assert o.gcode == mat24.octad_to_gcode(no)
        assert signed_o.gcode == (o * PLoopZ(0, o_cpl)).gcode
        assert signed_o.split_octad() == (o_signbit, o_cpl, o)
        nsub = randint(0, 63)
        sub = (-1)**o_signbit * SubOctad(no, nsub)
        sub1 = (-1)**o_signbit * SubOctad(o, nsub)
        sub_weight = mat24.suboctad_weight(nsub)
        assert sub == sub1
        assert o == (-1)**o_signbit * Octad(sub) * OMEGA**sub_weight
        assert sub.octad_number() == no
        ploop, cocode = sub.isplit()
        sign, gcode = (-1)**(ploop >> 12), ploop & 0xfff
        assert gcode == o.gcode ^ 0x800 * sub_weight
        #assert sub.suboctad == nsub
        assert sign == signed_o.sign == (-1)**o_signbit
        coc = mat24.suboctad_to_cocode(nsub, o.gcode)
        assert cocode == coc
        assert Cocode(sub) == Cocode(coc)
        assert sub == SubOctad(sub.sign * o, Cocode(coc))
        assert sub == sub.sign * SubOctad(no, Cocode(coc))

        o2 = Octad(randint(0, 758))
        sub2 = SubOctad(o, o2)
        assert Cocode(sub2) == Cocode(o & o2)
        assert len(Cocode(sub2)) // 2 & 1 == int((o & o2) / 2)

        t_sign, t_tag, t_i0, t_i1 = sub.vector_tuple()
        assert t_tag == 'T'
        assert t_sign == sign, (hex(sub.value), t_sign, o_signbit)
        assert t_i0 == no
        assert t_i1 == nsub
示例#19
0
def test_group_ploop(n_cases):
    print("")
    for i, (c, v, g) in enumerate(
            zip(cocode_testvectors(n_cases), get_testvectors(n_cases),
                autpl_testwords(n_cases))):
        cg = c * g
        vg = v * g
        if i < 1:
            print(c, "*", g, "=", cg)
            print(v, "*", g, "=", vg)
        cg_ref = Cocode(mat24.op_cocode_perm(c.ord, g.perm))
        assert cg == cg_ref
        assert len(cg) == len(c)
        vg_ref = GcVector(mat24.op_vect_perm(v.ord, g.perm))
        assert vg == vg_ref
        assert len(vg) == len(v)
        if len(v) & 1 == 0:
            assert v / 2 == vg / 2 == Parity(len(v) >> 1)
        if len(v) & 3 == 0:
            assert v / 4 == vg / 4 == Parity(len(v) >> 2)
        assert v % 2 == vg % 2 == Parity(len(v))
示例#20
0
def perm_mapping(length):
    """Create a mapping defining a unique permutation p in Mat24.

    Return a triple (src, dest, perm_num) with src, dest being
    lists of the given 'length' satisfying:

        p[src[i]] = dest[i] for 0 <= i < length .    

    for a unique permutation p in Mat24. p has the internal number 
    perm_num. 7 <= length < 24 must hold. The function does not 
    use any internal numbering or random process of the mmgroup 
    package for creating the permutation p.
    """
    p = rand_autpl_u7()  # p is a random permutation in AutPL
    perm = p.perm
    assert length >= 7
    while True:
        src = sample(range(24), length)
        if length >= 9 or len(Cocode(src)) >= 2:
            # The the permutation is determined by its effect on src
            return src, [perm[i] for i in src], p.perm_num
示例#21
0
def test_AD(n_cases):
    for p in characteristics():
        sp = space(p)
        for _ in range(n_cases):
            i0 = randint(0, 23)
            scalar = randint(1, p-1) + p * randint(-5, 5)
            c0 = Cocode([i0])
            v0 = GcVector([i0])
            ref = sp('A', i0, i0)
            for j0 in [i0, c0, v0]:
                for j1 in [i0, c0, v0]:
                    assert sp('A', j0, j1) ==  ref
                    mmv = sp()
                    mmv['A', j0, j1] =  scalar
                    assert mmv == scalar * ref
                    assert mmv['A', j0, j1] == scalar % p
                d1 = sp('D', j0)
                assert sp('D', j0) ==  ref
                mmv = sp()
                mmv['D', j0] =  scalar
                assert mmv == scalar * ref
                assert mmv['D', j0] == scalar % p
示例#22
0
def test_XYZ(n_cases):
    for p in characteristics():
        sp = space(p)
        for _ in range(n_cases):
            d = randint(0, 0x1fff)
            i = randint(0, 23)
            c = Cocode([i])
            v = GcVector([i])
            pl = PLoop(d)
            gc = GCode(d & 0xfff)
            d0 = d & 0x7ff
            scalar = randint(1, p-1) + p * randint(-5, 5)
            for tag in "XYZ":
                s2 = s1 = d >> 12
                if tag == "Y": s1 ^= d >> 11
                ref = (-1)**s1 * sp(tag, d0, i)
                for sign, dd in ((s1, d0), (s2, gc), (0, pl)):
                    for j in [i, c, v]:
                        assert (-1)**sign * sp(tag, dd, j) == ref
                        mmv = sp()
                        mmv[tag, dd, j] = (-1)**sign * scalar
                        assert mmv == scalar * ref
                        signed_scalar = (-1)**sign * scalar % p
                        assert mmv[tag, dd, j] == signed_scalar
示例#23
0
from mmgroup import mat24
from mmgroup.generators import gen_leech2_type
from mmgroup.generators import gen_leech2_subtype
from mmgroup.generators import gen_leech2_op_atom
from mmgroup.generators import gen_leech2_reduce_type4
from mmgroup.generators import gen_leech2_op_word
from mmgroup.generators import gen_leech2_start_type4
from mmgroup.generators import gen_leech2_start_type24

# Standard vector in the Leech lattice mod 2 in Leech lattice encoding
# The standard fram \Omega
OMEGA = 0x800000
# The standard type-2 vector \beta
BETA = 0x200

assert Cocode(BETA).syndrome() == GcVector(0xC)

#####################################################################
# Test function gen_leech2_start_type4
#####################################################################

#####################################################################
# Reference implementation of gen_leech2_start_type4()


def ref_leech2_start_type4(v):
    """Reference implementation for function gen_leech2_start_type4

    This is equivalent to function ``leech2_start_type4```.
    """
    v &= 0xffffff
示例#24
0
def reduce_type2_ortho(v, verbose=0):
    r"""Map (orthgonal) short vector in Leech lattice to standard vector

    This is a python implementation of the C function
    ``gen_leech2_reduce_type2_ortho`` in file ``gen_leech.c``.
   
    Let ``v \in \Lambda / 2 \Lambda`` of type 2 be given by 
    parameter ``v`` in Leech lattice encoding. 

    In the real Leech lattice, (the origin of) the vector ``v`` must
    be orthogonal to the standard short vector ``beta``. Here ``beta``
    is the short vector in the Leech  lattice  propotional
    to  ``e_2 - e_3``, where ``e_i`` is  the ``i``-th basis vector
    of ``\{0,1\}^{24}``.
   
    Let ``beta'`` be the short vector in the Leech lattice propotional
    to  ``e_2 + e_3``.  Then the function constructs a ``g \in G_{x0}`` 
    that maps ``v`` to ``beta'`` and fixes ``beta``.
 
    The element ``g`` is returned as a word in the generators
    of ``G_{x0}`` of length ``n \leq 6``. Each atom of the 
    word ``g`` is encoded as  defined in the header 
    file ``mmgroup_generators.h``. 

    The function stores ``g`` as a word of generators in the
    array ``pg_out`` and returns the length  ``n``  of that
    word. It returns a negative number in case of failure, 
    e.g. if ``v`` is not of type 2,  or not orthogonal 
    to ``beta'`` in the real Leech lattice.
    """
    vtype = gen_leech2_subtype(v)
    if (vtype >> 4) != 2:
        raise ValueError("Vector is not short")
    if gen_leech2_type(v ^ 0x200) != 4:
        raise ValueError("Vector not orthogonal to standard vector")
    result = []
    for _i in range(4):
        if verbose:
            coc = (v ^ mat24.ploop_theta(v >> 12)) & 0xfff
            vt = gen_leech2_subtype(v)
            coc_anchor = 0
            if vt in [0x22]:
                w = mat24.gcode_weight(v >> 12)
                vect = mat24.gcode_to_vect((v ^ ((w & 4) << 21)) >> 12)
                coc_anchor = mat24.lsbit24(vect)
            coc_syn = Cocode(coc).syndrome_list(coc_anchor)
            gcode = mat24.gcode_to_vect(v >> 12)
            print("Round %d, v = %s, subtype %s, gcode %s, cocode %s" %
                  (_i, hex(v & 0xffffff), hex(vt), hex(gcode), coc_syn))
        assert vtype == gen_leech2_subtype(v)
        if vtype == 0x21:
            exp = xi_reduce_odd_type2(v)
            vtype = 0x22
        elif vtype == 0x22:
            exp = xi_reduce_octad(v)
            if exp < 0:
                w = mat24.gcode_weight(v >> 12)
                vect = mat24.gcode_to_vect((v ^ ((w & 4) << 21)) >> 12)
                if vect & 0x0c:
                    vect &= ~0x0c
                    src = mat24.vect_to_list(vect, 2) + [2, 3]
                    dest = [0, 1, 2, 3]
                else:
                    src = [2, 3] + mat24.vect_to_list(vect, 3)
                    v5 = (1 << src[2]) | (1 << src[3]) | (1 << src[4])
                    v5 |= 0x0c
                    special = mat24.syndrome(v5, 24)
                    src.append(mat24.lsbit24(special & vect))
                    dest = [2, 3, 4, 5, 6, 7]
                v = apply_perm(v, src, dest, len(src), result, verbose)
                exp = xi_reduce_octad(v)
                assert exp >= 0
            vtype = 0x20
        elif vtype == 0x20:
            if ((v & 0xffffff) == 0x800200):
                return np.array(result, dtype=np.uint32)
            syn = (mat24.cocode_syndrome(v, 0)) & ~0xc
            if syn and syn != 3:
                src = mat24.vect_to_list(syn, 2) + [2, 3]
                v = apply_perm(v, src, [0, 1, 2, 3], 4, result, verbose)
            exp = 2 - ((v >> 23) & 1)
        else:
            raise ValueError("WTF")
        if exp:
            exp = 0xE0000003 - exp
            v = gen_leech2_op_atom(v, exp)
            result.append(exp)
    raise ValueError("WTF1")
示例#25
0
def reduce_type4_std(v, verbose=0):
    r"""Map type-4 vector in Leech lattice to standard vector

    This is (almost) a python implementation of the C function
    ``gen_leech2_reduce_type4`` in file ``gen_leech.c``.
   
    Let ``v \in \Lambda / 2 \Lambda`` of type 4 be given by 
    parameter ``v`` in Leech lattice encoding. 

    Let ``Omega`` be the type- vector in the Leech  lattice 
    corresponding to the standard coordinate frame in the Leech
    lattice.
   
    Then the function constructs a ``g \in G_{x0}`` 
    that maps ``v`` to ``Omega``.
 
    The element ``g`` is returned as a word in the generators
    of ``G_{x0}`` of length ``n \leq 6``. Each atom of the 
    word ``g`` is encoded as  defined in the header 
    file ``mmgroup_generators.h``. 

    The function stores ``g`` as a word of generators in the
    array ``pg_out`` and returns the length  ``n``  of that
    word. It returns a negative number in case of failure, 
    e.g. if ``v`` is not of type 4.

    We remark that the C function ``gen_leech2_reduce_type4`` 
    treats certain type-4  vectors ``v`` in a special way
    as indicated in function ``reduce_type4``.
    """
    if verbose:
        print("Transforming  type-4 vector %s to Omega" % hex(v & 0x1ffffff))
    vtype = gen_leech2_subtype(v)
    result = []
    for _i in range(5):
        coc = (v ^ mat24.ploop_theta(v >> 12)) & 0xfff
        if verbose:
            vt = gen_leech2_subtype(v)
            coc_anchor = 0
            if vt in [0x42, 0x44]:
                w = mat24.gcode_weight(v >> 12)
                vect = mat24.gcode_to_vect((v ^ ((w & 4) << 21)) >> 12)
                coc_anchor = mat24.lsbit24(vect)
            coc_syn = Cocode(coc).syndrome_list(coc_anchor)
            gcode = mat24.gcode_to_vect(v >> 12)
            print("Round %d, v = %s, subtype %s, gcode %s, cocode %s" %
                  (_i, hex(v & 0xffffff), hex(vt), hex(gcode), coc_syn))
        assert vtype == gen_leech2_subtype(v)
        if vtype == 0x48:
            if verbose:
                res = list(map(hex, result))
                print("Transformation is\n", res)
            return np.array(result, dtype=np.uint32)
        elif vtype == 0x40:
            if v & 0x7ffbff:
                syn = mat24.cocode_syndrome(coc, 0)
                src = mat24.vect_to_list(syn, 4)
                v = apply_perm(v, src, LSTD, 4, result, verbose)
                #print("after type 40", hex(v),  Cocode(v).syndrome(0))
            exp = 2 - ((v >> 23) & 1)
            vtype = 0x48
        elif vtype in [0x42, 0x44]:
            exp = xi_reduce_octad(v)
            if exp < 0:
                v = find_octad_permutation(v, result, verbose)
                exp = xi_reduce_octad(v)
                assert exp >= 0
            vtype = 0x40
        elif vtype == 0x46:
            exp = xi_reduce_dodecad(v, verbose)
            if exp < 0:
                vect = mat24.gcode_to_vect(v >> 12)
                src = mat24.vect_to_list(vect, 4)
                v = apply_perm(v, src, LSTD, len(src), result, verbose)
                exp = xi_reduce_dodecad(v, verbose)
                assert exp >= 0
            vtype = 0x44
        elif vtype == 0x43:
            exp = xi_reduce_odd_type4(v, verbose)
            if exp < 0:
                vect = mat24.gcode_to_vect(v >> 12)
                syn = mat24.cocode_syndrome(coc, 24)
                src = mat24.vect_to_list(syn, 3)
                #print("coc list", src)
                v = apply_perm(v, src, LSTD[1:], len(src), result, verbose)
                exp = xi_reduce_odd_type4(v, verbose)
                assert exp > 0
            vtype = 0x42 + ((exp & 0x100) >> 7)
            exp &= 3
        else:
            raise ValueError("WTF")
        if exp:
            exp = 0xE0000003 - exp
            v_old = v
            v = gen_leech2_op_atom(v, exp)
            assert v & 0xfe000000 == 0, (hex(v_old), hex(exp), hex(v))
            result.append(exp)
    raise ValueError("WTF1")
示例#26
0
def reduce_type2(v, verbose=1):
    r"""Map (orthgonal) short vector in Leech lattice to standard vector

    This is a python implementation of the C function
    ``gen_leech2_reduce_type2`` in file ``gen_leech.c``.
   
    Let ``v \in \Lambda / 2 \Lambda`` of type 2 be given by 
    parameter ``v`` in Leech lattice encoding. 

    Let ``beta`` be the short vector in the Leech  lattice propotional
    to  ``e_2 - e_3``, where ``e_i`` is  the ``i``-th basis vector
    of ``\{0,1\}^{24}``.
   
    Then the function constructs a ``g \in G_{x0}`` 
    that maps ``v`` to ``beta``.
 
    The element ``g`` is returned as a word in the generators
    of ``G_{x0}`` of length ``n \leq 6``. Each atom of the 
    word ``g`` is encoded as  defined in the header 
    file ``mmgroup_generators.h``. 

    The function stores ``g`` as a word of generators in the
    array ``pg_out`` and returns the length  ``n``  of that
    word. It returns a negative number in case of failure, 
    e.g. if ``v`` is not of type 2.
    """
    vtype = gen_leech2_subtype(v)
    if (vtype >> 4) != 2:
        raise ValueError("Vector is not short")
    result = []
    for _i in range(4):
        if verbose:
            coc = (v ^ mat24.ploop_theta(v >> 12)) & 0xfff
            vt = gen_leech2_subtype(v)
            coc_anchor = 0
            if vt in [0x22]:
                w = mat24.gcode_weight(v >> 12)
                vect = mat24.gcode_to_vect((v ^ ((w & 4) << 21)) >> 12)
                coc_anchor = mat24.lsbit24(vect)
            coc_syn = Cocode(coc).syndrome_list(coc_anchor)
            gcode = mat24.gcode_to_vect(v >> 12)
            print("Round %d, v = %s, subtype %s, gcode %s, cocode %s" %
                  (_i, hex(v & 0xffffff), hex(vt), hex(gcode), coc_syn))
        assert vtype == gen_leech2_subtype(v)
        if vtype == 0x21:
            exp = xi_reduce_odd_type2(v)
            vtype = 0x22
        elif vtype == 0x22:
            exp = xi_reduce_octad(v)
            if exp < 0:
                w = mat24.gcode_weight(v >> 12)
                vect = mat24.gcode_to_vect((v ^ ((w & 4) << 21)) >> 12)
                src = mat24.vect_to_list(vect, 4)
                dest = [0, 1, 2, 3]
                v = apply_perm(v, src, dest, 4, result, verbose)
                exp = xi_reduce_octad(v)
                assert exp >= 0
            vtype = 0x20
        elif vtype == 0x20:
            exp = 0
            # map v to stadard cocode word [2,3]
            if v & 0x7fffff != 0x200:
                syn = (mat24.cocode_syndrome(v, 0))
                src = mat24.vect_to_list(syn, 2)
                v = apply_perm(v, src, [2, 3], 2, result, verbose)
            # correct v2 if v2 is the cocode word [2,3] + Omega
            if v & 0x800000:
                atom = 0xC0000200
                # operation y_d such that d has odd scalar
                # product with cocode word [2,3]
                v = gen_leech2_op_atom(v, atom)
                result.append(atom)
            assert v & 0xffffff == 0x200
            return np.array(result, dtype=np.uint32)
        else:
            raise ValueError("WTF")
        if exp:
            exp = 0xE0000003 - exp
            v = gen_leech2_op_atom(v, exp)
            result.append(exp)
    raise ValueError("WTF1")
示例#27
0
def test_Parker_loop():
    print("\nTesting operation on Parker loop")
    for i in range(200):
        # Test power map, inveriosn, sign, theta, and conversion to GCode
        n1 = randint(0, 0x1fff)
        p1 = PLoop(n1)
        assert p1.ord == n1 == p1.gcode + 0x1000 * (1 - p1.sign) / 2
        if (i < 2):
            print("Testing Parker loop element", p1, ", GCode = ", GCode(p1))
        assert len(p1) == mat24.gcode_weight(n1) << 2
        assert p1.theta() == Cocode(mat24.ploop_theta(n1))
        assert p1 / 4 == p1.theta(p1) == Parity(mat24.ploop_cocycle(n1, n1))
        assert p1**2 == PLoopZ(p1 / 4) == (-PLoopZ())**(p1 / 4)
        assert p1**(-5) == PLoopZ(p1 / 4) * p1 == (-1)**(p1 / 4) * p1 == 1 / p1
        assert (1 / p1).ord ^ n1 == (mat24.gcode_weight(n1) & 1) << 12
        assert -1 / p1 == -p1**3 == -(1 / p1)
        assert p1 * (-1 / p1) == PLoopZ(1) == -PLoopZ()
        assert abs(p1).ord == GCode(p1).ord == p1.ord & 0xfff
        assert p1 != GCode(p1)
        assert +p1 == 1 * p1 == p1 * 1 == p1
        assert p1 != -p1 and p1 != ~p1
        assert (-p1).ord == p1.ord ^ 0x1000
        assert (~p1).ord == p1.ord ^ 0x800
        s, o, p1_pos = p1.split()
        assert s == (p1.ord >> 12) & 1
        assert o == (p1.ord >> 11) & 1
        assert p1.sign == (-1)**s
        assert p1_pos.ord == p1.ord & 0x7ff
        assert PLoopZ(s, o) * p1_pos == p1
        assert PLoopZ(0, o) * p1_pos == abs(p1)
        assert PLoopZ(s + 1, o) * p1_pos == -p1
        assert -p1 == -1 * p1 == p1 * -1 == p1 / -1 == -1 / p1**-5
        assert PLoopZ(s, 1 + o) * p1_pos == ~p1
        assert PLoopZ(1 + s, 1 + o) * p1_pos == ~-p1 == -~p1 == ~p1 / -1
        assert 2 * p1 == GCode(0) == -2 * GCode(p1)
        assert -13 * p1 == GCode(p1) == 7 * GCode(p1)
        if len(p1) & 7 == 0:
            assert p1**Parity(1) == p1
            assert p1**Parity(0) == PLoop(0)
        else:
            with pytest.raises(ValueError):
                p1**Parity(randint(0, 1))
        assert p1.bit_list == mat24.gcode_to_bit_list(p1.value & 0xfff)
        assert p1.bit_list == GcVector(p1).bit_list
        assert p1.bit_list == GCode(p1).bit_list
        assert PLoop(GcVector(p1) + 0) == PLoop(GCode(p1) + 0) == abs(p1)
        assert p1 + 0 == 0 + p1 == GCode(p1) + 0 == 0 + GCode(p1)
        assert Cocode(GcVector(p1)) == Cocode(0)
        assert p1 / 2 == Parity(0)

        # Test Parker loop multiplication and commutator
        n2 = randint(0, 0x1fff)
        p2 = PLoop(n2)
        coc = Cocode(mat24.ploop_cap(n1, n2))
        if (i < 1):
            print("Intersection with", p2, "is", coc)
        p2inv = p2**-1
        assert p1 * p2 == PLoop(mat24.mul_ploop(p1.ord, p2.ord))
        assert p1 / p2 == p1 * p2**(-1)
        assert p1 + p2 == p1 - p2 == GCode(p1 * p2) == GCode(n1 ^ n2)
        assert (p1 * p2) / (p2 * p1) == PLoopZ((p1 & p2) / 2)
        assert p1 & p2 == coc
        assert p1.theta() == Cocode(mat24.ploop_theta(p1.ord))
        assert p1.theta(p2) == Parity(mat24.ploop_cocycle(p1.ord, p2.ord))
        assert (p1 & p2) / 2 == p1.theta(p2) + p2.theta(p1)
        assert p1 & p2 == p1.theta() + p2.theta() + (p1 + p2).theta()
        assert int((p1 & p2) / 2) == mat24.ploop_comm(p1.ord, p2.ord)
        assert GcVector(p1 & p2) == GcVector(p1) & GcVector(p2)
        assert ~GcVector(p1 & p2) == ~GcVector(p1) | ~GcVector(p2)
        assert Cocode(GcVector(p1 & p2)) == p1 & p2

        # Test associator
        n3 = randint(0, 0x1fff)
        p3 = PLoop(n3)
        assert p1 * p2 * p3 / (p1 * (p2 * p3)) == PLoopZ(p1 & p2 & p3)
        assert int(p1 & p2 & p3) == mat24.ploop_assoc(p1.ord, p2.ord, p3.ord)
        i = randint(-1000, 1000)
        par = Parity(i)
        s3 = ((p3 & p1) & p2) + par
        assert s3 == ((p3 & p1) & p2) + par
        assert s3 == i + (p1 & (p2 & p3))
        assert s3 == par + (p1 & (p2 & p3))

        # Test some operations leading to a TypeError
        with pytest.raises(TypeError):
            p1 & p2 & p3 & p1
        with pytest.raises(TypeError):
            coc & coc
        with pytest.raises(TypeError):
            GCode(p1) * GCode(p2)
        with pytest.raises(TypeError):
            1 / GCode(p2)
        with pytest.raises(ValueError):
            coc / 4
        with pytest.raises(TypeError):
            p1 * coc
        with pytest.raises(TypeError):
            coc * p1
        types = [GcVector, GCode, Cocode, PLoop]
        for type_ in types:
            with pytest.raises(TypeError):
                int(type_(0))

    print("Parker Loop test passed")
示例#28
0
 def baby_value_A(self):
     r"""Yet to be documented!!!"""
     return self.v.eval_A(XLeech2(Cocode([2,3])))
示例#29
0
########################################################################
# Obtaining samples of transformed axes
########################################################################
########################################################################

########################################################################
# Generate a random element of Co_2
########################################################################

FIXED_PAIR = [3, 2]
FIXED_TUPLE = ("I", 3, 2)

PI22 = set([0, 1] + list(range(4, 24)))
PI7 = [2, 3, 0, 1, 4, 5, 8]

StdCocodeVector = Cocode(FIXED_PAIR)
EvenGCodeMask = None
for i in range(12):
    if (PLoop(1 << i) & StdCocodeVector).ord:
        assert EvenGCodeMask == None
        EvenGCodeMask = 0xfff ^ (1 << i)
assert EvenGCodeMask is not None


def rand_pi_m22():
    r = randint(0, 1)
    img = [2 + r, 3 - r] + sample(PI22, 3)
    syn = GcVector(img).syndrome_list()
    compl = set(range(24)) - set(img + syn)
    img += sample(syn, 1) + sample(compl, 1)
    result = AutPL('r', zip(PI7, img))
示例#30
0
########################################################################
########################################################################

PROCESSES = 0

########################################################################
########################################################################
# The group elements and vectors and the vector space to be used
########################################################################
########################################################################

# The central involution in the subgroup ``G_x0``-
g_central = G("x", 0x1000)

# The standard 2A element in the monste froup
g_axis = G("d", Cocode([2, 3]))

# Tuple describing the standard 2A axis vector
v_start_tuple = ("I", 3, 2)

# The standars 2A axis vector
v_axis = V15(*v_start_tuple)

########################################################################
########################################################################
# Class for storing a pair (g, v), g in MM, v an axis
########################################################################
########################################################################

TYPE_SCORES = {
    '2A': 11,