def get_angles(mol): """Determine bond angle atom triplets from bond graph and get parameters. Search bond graph for bond angle triplets, and parameter tables for mm parameters. Use to create a new Angle object and append to Molecule. Count as angle if ij and jk are bonded in triplet ijk. Args: mol (mmlib.molecule.Molecule): Molecule object with bond graph of atom pairs within covalent radius cutoff threshold. """ for j in range(mol.n_atoms): at2 = mol.atoms[j] for i in mol.bond_graph[j].keys(): at1 = mol.atoms[i] r_ij = mol.bond_graph[i][j] for k in mol.bond_graph[j].keys(): if (i >= k): continue at3 = mol.atoms[k] r_jk = mol.bond_graph[j][k] a_ijk = geomcalc.get_a_ijk(at1.coords, at2.coords, at3.coords, r_ij, r_jk) k_a, a_eq = param.get_angle_param(at1.type, at2.type, at3.type) if (k_a > 0.0): mol.angles.append(molecule.Angle(i, j, k, a_ijk, a_eq, k_a)) mol.angles = sorted(mol.angles, key=lambda a: a.at3) mol.angles = sorted(mol.angles, key=lambda a: a.at2) mol.angles = sorted(mol.angles, key=lambda a: a.at1) mol.n_angles = len(mol.angles)
def get_gdir_torsion(coords1, coords2, coords3, coords4, r_12=None, r_23=None, r_34=None): """Calculate direction of energy gradients between torsion atoms. Args: coords1 (float*): 3 cartesian coordinates [Angstrom] of atom1. coords2 (float*): 3 cartesian coordinates [Angstrom] of atom2. coords3 (float*): 3 cartesian coordinates [Angstrom] of atom3. coords4 (float*): 3 cartesian coordinates [Angstrom] of atom4. r_12 (float): Distance between atom1 and atom2 (default None). r_23 (float): Distance between atom2 and atom3 (default None). r_34 (float): Distance between atom3 and atom4 (default None). Returns: gdir1 (float*), gdir2 (float*), gdir3 (float*), gdir4 (float*): vectors in the direction of max increasing torsion angle. """ if (not r_12): r_12 = geomcalc.get_r_ij(coords1, coords2) if (not r_23): r_23 = geomcalc.get_r_ij(coords2, coords3) if (not r_34): r_34 = geomcalc.get_r_ij(coords3, coords4) u_21 = geomcalc.get_u_ij(coords2, coords1, r_12) u_34 = geomcalc.get_u_ij(coords3, coords4, r_34) u_23 = geomcalc.get_u_ij(coords2, coords3, r_23) u_32 = -1.0 * u_23 a_123 = geomcalc.get_a_ijk(coords1, coords2, coords3, r_12, r_23) a_432 = geomcalc.get_a_ijk(coords4, coords3, coords2, r_34, r_23) s_123 = math.sin(geomcalc.deg2rad() * a_123) s_432 = math.sin(geomcalc.deg2rad() * a_432) c_123 = math.cos(geomcalc.deg2rad() * a_123) c_432 = math.cos(geomcalc.deg2rad() * a_432) gdir1 = geomcalc.get_ucp(u_21, u_23) / (r_12 * s_123) gdir4 = geomcalc.get_ucp(u_34, u_32) / (r_34 * s_432) gdir2 = (r_12 / r_23 * c_123 - 1.0) * gdir1 - (r_34 / r_23 * c_432) * gdir4 gdir3 = (r_34 / r_23 * c_432 - 1.0) * gdir4 - (r_12 / r_23 * c_123) * gdir1 return gdir1, gdir2, gdir3, gdir4
def update_angles(mol): """Update all bond angles [degrees] within a molecule object. Args: mol (mmlib.molecule.Molecule): Molecule object with angle data. """ for p in range(mol.n_angles): a = mol.angles[p] r12 = mol.bond_graph[a.at1][a.at2] r23 = mol.bond_graph[a.at2][a.at3] c1 = mol.atoms[a.at1].coords c2 = mol.atoms[a.at2].coords c3 = mol.atoms[a.at3].coords a.a_ijk = geomcalc.get_a_ijk(c1, c2, c3, r12, r23)
def get_gdir_outofplane(coords1, coords2, coords3, coords4, oop, r_31=None, r_32=None, r_34=None): """Calculate direction of energy gradients between outofplane atoms. Args: coords1 (float*): 3 cartesian coordinates [Angstrom] of atom1. coords2 (float*): 3 cartesian coordinates [Angstrom] of atom2. coords3 (float*): 3 cartesian coordinates [Angstrom] of atom3. coords4 (float*): 3 cartesian coordinates [Angstrom] of atom4. oop (float): Out-of-plane angles bewteen atoms 1, 2, 3, and 4. r_31 (float): Distance between atom3 and atom1 (default None). r_32 (float): Distance between atom3 and atom2 (default None). r_34 (float): Distance between atom3 and atom4 (default None). Returns: gdir1 (float*), gdir2 (float*), gdir3 (float*), gdir4 (float*): vectors in the direction of max increasing outofplane angle. """ if (not r_31): r_31 = geomcalc.get_r_ij(coords3, coords1) if (not r_32): r_32 = geomcalc.get_r_ij(coords3, coords2) if (not r_34): r_34 = geomcalc.get_r_ij(coords3, coords4) u_31 = geomcalc.get_u_ij(coords3, coords1, r_31) u_32 = geomcalc.get_u_ij(coords3, coords2, r_32) u_34 = geomcalc.get_u_ij(coords3, coords4, r_34) cp_3234 = geomcalc.get_cp(u_32, u_34) cp_3431 = geomcalc.get_cp(u_34, u_31) cp_3132 = geomcalc.get_cp(u_31, u_32) a_132 = geomcalc.get_a_ijk(coords1, coords3, coords2) s_132 = math.sin(geomcalc.deg2rad() * a_132) c_132 = math.cos(geomcalc.deg2rad() * a_132) c_oop = math.cos(geomcalc.deg2rad() * oop) t_oop = math.tan(geomcalc.deg2rad() * oop) gdir1 = ((1.0 / r_31) * (cp_3234 / (c_oop * s_132) - (t_oop / s_132**2) * (u_31 - c_132 * u_32))) gdir2 = ((1.0 / r_32) * (cp_3431 / (c_oop * s_132) - (t_oop / s_132**2) * (u_32 - c_132 * u_31))) gdir4 = ((1.0 / r_34) * (cp_3132 / (c_oop * s_132) - (t_oop * u_34))) gdir3 = -1.0 * (gdir1 + gdir2 + gdir4) return gdir1, gdir2, gdir3, gdir4
def get_angle(mol, record): """Parse angle record into an angle object and append to molecule. Appends mmlib.molecule.Angle object to mmlib.molecule.Molecule object. Contents of angle object include (int) 3 atomic indices, (float) spring constant [kcal/(mol*radian^2)], (float) equilibrium bond angle [degrees], and (float) bond angle [degrees]. Args: mol (mmlib.molecule.Molecule): Molecule to append angle. record (str*): Array of strings from line of prm file. """ at1, at2, at3 = int(record[1])-1, int(record[2])-1, int(record[3])-1 k_a, a_eq = float(record[4]), float(record[5]) c1, c2, c3 = (mol.atoms[at1].coords, mol.atoms[at2].coords, mol.atoms[at3].coords) a_ijk = geomcalc.get_a_ijk(c1, c2, c3) angle = molecule.Angle(at1, at2, at3, a_ijk, a_eq, k_a) mol.angles.append(angle)