def test_db_decode(): pred = torch.zeros((1, 8, 8)) pred[0, 2:7, 2:7] = 0.8 expect_result_quad = [[ 1.0, 8.0, 1.0, 1.0, 8.0, 1.0, 8.0, 8.0, 0.800000011920929 ]] expect_result_poly = [[ 8, 2, 8, 6, 6, 8, 2, 8, 1, 6, 1, 2, 2, 1, 6, 1, 0.800000011920929 ]] with pytest.raises(ValueError): db_decode(preds=pred, text_repr_type='dummpy') result_quad = db_decode( preds=pred, text_repr_type='quad', min_text_width=1) result_poly = db_decode( preds=pred, text_repr_type='poly', min_text_width=1) assert result_quad == expect_result_quad assert result_poly == expect_result_poly
def test_db_boxes_from_bitmaps(): """Test the boxes_from_bitmaps function in db_decoder.""" pred = np.array([[[0.8, 0.8, 0.8, 0.8, 0], [0.8, 0.8, 0.8, 0.8, 0], [0.8, 0.8, 0.8, 0.8, 0], [0.8, 0.8, 0.8, 0.8, 0], [0.8, 0.8, 0.8, 0.8, 0]]]) preds = torch.FloatTensor(pred).requires_grad_(True) boxes = db_decode(preds, text_repr_type='quad', min_text_width=0) assert len(boxes) == 1
def test_db_boxes_from_bitmaps(): """Test the boxes_from_bitmaps function in db_decoder.""" from mmocr.models.textdet.postprocess.wrapper import db_decode pred = np.array([[[0.8, 0.8, 0.8, 0.8, 0], [0.8, 0.8, 0.8, 0.8, 0], [0.8, 0.8, 0.8, 0.8, 0], [0.8, 0.8, 0.8, 0.8, 0], [0.8, 0.8, 0.8, 0.8, 0]]]) preds = torch.FloatTensor(pred).requires_grad_(True) boxes = db_decode(preds, text_repr_type='quad', min_text_width=0) assert len(boxes) == 1