示例#1
0
def test_collect_multi_frames():
    # video file for test
    video_path = 'tests/data/posetrack18/videos/000001_mpiinew_test/'\
        '000001_mpiinew_test.mp4'
    video = mmcv.VideoReader(video_path)

    frame_id = 0
    indices = [-1, -2, 0, 1, 2]

    _ = collect_multi_frames(video, frame_id, indices, online=True)

    _ = collect_multi_frames(video, frame_id, indices, online=False)
def main():
    """Visualize the demo video (support both single-frame and multi-frame).

    Using mmdet to detect the human.
    """
    parser = ArgumentParser()
    parser.add_argument('det_config', help='Config file for detection')
    parser.add_argument('det_checkpoint', help='Checkpoint file for detection')
    parser.add_argument('pose_config', help='Config file for pose')
    parser.add_argument('pose_checkpoint', help='Checkpoint file for pose')
    parser.add_argument('--video-path', type=str, help='Video path')
    parser.add_argument(
        '--show',
        action='store_true',
        default=False,
        help='whether to show visualizations.')
    parser.add_argument(
        '--out-video-root',
        default='',
        help='Root of the output video file. '
        'Default not saving the visualization video.')
    parser.add_argument(
        '--device', default='cuda:0', help='Device used for inference')
    parser.add_argument(
        '--det-cat-id',
        type=int,
        default=1,
        help='Category id for bounding box detection model')
    parser.add_argument(
        '--bbox-thr',
        type=float,
        default=0.3,
        help='Bounding box score threshold')
    parser.add_argument(
        '--kpt-thr', type=float, default=0.3, help='Keypoint score threshold')
    parser.add_argument(
        '--radius',
        type=int,
        default=4,
        help='Keypoint radius for visualization')
    parser.add_argument(
        '--thickness',
        type=int,
        default=1,
        help='Link thickness for visualization')

    parser.add_argument(
        '--use-multi-frames',
        action='store_true',
        default=False,
        help='whether to use multi frames for inference in the pose'
        'estimation stage. Default: False.')
    parser.add_argument(
        '--online',
        action='store_true',
        default=False,
        help='inference mode. If set to True, can not use future frame'
        'information when using multi frames for inference in the pose'
        'estimation stage. Default: False.')

    assert has_mmdet, 'Please install mmdet to run the demo.'

    args = parser.parse_args()

    assert args.show or (args.out_video_root != '')
    assert args.det_config is not None
    assert args.det_checkpoint is not None

    print('Initializing model...')
    # build the detection model from a config file and a checkpoint file
    det_model = init_detector(
        args.det_config, args.det_checkpoint, device=args.device.lower())

    # build the pose model from a config file and a checkpoint file
    pose_model = init_pose_model(
        args.pose_config, args.pose_checkpoint, device=args.device.lower())

    dataset = pose_model.cfg.data['test']['type']
    # get datasetinfo
    dataset_info = pose_model.cfg.data['test'].get('dataset_info', None)
    if dataset_info is None:
        warnings.warn(
            'Please set `dataset_info` in the config.'
            'Check https://github.com/open-mmlab/mmpose/pull/663 for details.',
            DeprecationWarning)
    else:
        dataset_info = DatasetInfo(dataset_info)

    # read video
    video = mmcv.VideoReader(args.video_path)
    assert video.opened, f'Faild to load video file {args.video_path}'

    if args.out_video_root == '':
        save_out_video = False
    else:
        os.makedirs(args.out_video_root, exist_ok=True)
        save_out_video = True

    if save_out_video:
        fps = video.fps
        size = (video.width, video.height)
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        videoWriter = cv2.VideoWriter(
            os.path.join(args.out_video_root,
                         f'vis_{os.path.basename(args.video_path)}'), fourcc,
            fps, size)

    # frame index offsets for inference, used in multi-frame inference setting
    if args.use_multi_frames:
        assert 'frame_indices_test' in pose_model.cfg.data.test.data_cfg
        indices = pose_model.cfg.data.test.data_cfg['frame_indices_test']

    # whether to return heatmap, optional
    return_heatmap = False

    # return the output of some desired layers,
    # e.g. use ('backbone', ) to return backbone feature
    output_layer_names = None

    print('Running inference...')
    for frame_id, cur_frame in enumerate(mmcv.track_iter_progress(video)):
        # get the detection results of current frame
        # the resulting box is (x1, y1, x2, y2)
        mmdet_results = inference_detector(det_model, cur_frame)

        # keep the person class bounding boxes.
        person_results = process_mmdet_results(mmdet_results, args.det_cat_id)

        if args.use_multi_frames:
            frames = collect_multi_frames(video, frame_id, indices,
                                          args.online)

        # test a single image, with a list of bboxes.
        pose_results, returned_outputs = inference_top_down_pose_model(
            pose_model,
            frames if args.use_multi_frames else cur_frame,
            person_results,
            bbox_thr=args.bbox_thr,
            format='xyxy',
            dataset=dataset,
            dataset_info=dataset_info,
            return_heatmap=return_heatmap,
            outputs=output_layer_names)

        # show the results
        vis_frame = vis_pose_result(
            pose_model,
            cur_frame,
            pose_results,
            dataset=dataset,
            dataset_info=dataset_info,
            kpt_score_thr=args.kpt_thr,
            radius=args.radius,
            thickness=args.thickness,
            show=False)

        if args.show:
            cv2.imshow('Frame', vis_frame)

        if save_out_video:
            videoWriter.write(vis_frame)

        if args.show and cv2.waitKey(1) & 0xFF == ord('q'):
            break

    if save_out_video:
        videoWriter.release()
    if args.show:
        cv2.destroyAllWindows()
示例#3
0
def main():
    parser = ArgumentParser()
    parser.add_argument('det_config', help='Config file for detection')
    parser.add_argument('det_checkpoint', help='Checkpoint file for detection')
    parser.add_argument('pose_detector_config',
                        type=str,
                        default=None,
                        help='Config file for the 1st stage 2D pose detector')
    parser.add_argument(
        'pose_detector_checkpoint',
        type=str,
        default=None,
        help='Checkpoint file for the 1st stage 2D pose detector')
    parser.add_argument('pose_lifter_config',
                        help='Config file for the 2nd stage pose lifter model')
    parser.add_argument(
        'pose_lifter_checkpoint',
        help='Checkpoint file for the 2nd stage pose lifter model')
    parser.add_argument('--video-path',
                        type=str,
                        default='',
                        help='Video path')
    parser.add_argument(
        '--rebase-keypoint-height',
        action='store_true',
        help='Rebase the predicted 3D pose so its lowest keypoint has a '
        'height of 0 (landing on the ground). This is useful for '
        'visualization when the model do not predict the global position '
        'of the 3D pose.')
    parser.add_argument(
        '--norm-pose-2d',
        action='store_true',
        help='Scale the bbox (along with the 2D pose) to the average bbox '
        'scale of the dataset, and move the bbox (along with the 2D pose) to '
        'the average bbox center of the dataset. This is useful when bbox '
        'is small, especially in multi-person scenarios.')
    parser.add_argument(
        '--num-instances',
        type=int,
        default=-1,
        help='The number of 3D poses to be visualized in every frame. If '
        'less than 0, it will be set to the number of pose results in the '
        'first frame.')
    parser.add_argument('--show',
                        action='store_true',
                        default=False,
                        help='whether to show visualizations.')
    parser.add_argument('--out-video-root',
                        type=str,
                        default='vis_results',
                        help='Root of the output video file. '
                        'Default not saving the visualization video.')
    parser.add_argument('--device',
                        default='cuda:0',
                        help='Device for inference')
    parser.add_argument('--det-cat-id',
                        type=int,
                        default=1,
                        help='Category id for bounding box detection model')
    parser.add_argument('--bbox-thr',
                        type=float,
                        default=0.9,
                        help='Bounding box score threshold')
    parser.add_argument('--kpt-thr', type=float, default=0.3)
    parser.add_argument('--use-oks-tracking',
                        action='store_true',
                        help='Using OKS tracking')
    parser.add_argument('--tracking-thr',
                        type=float,
                        default=0.3,
                        help='Tracking threshold')
    parser.add_argument('--radius',
                        type=int,
                        default=8,
                        help='Keypoint radius for visualization')
    parser.add_argument('--thickness',
                        type=int,
                        default=2,
                        help='Link thickness for visualization')
    parser.add_argument(
        '--smooth',
        action='store_true',
        help='Apply a temporal filter to smooth the 2D pose estimation '
        'results. See also --smooth-filter-cfg.')
    parser.add_argument(
        '--smooth-filter-cfg',
        type=str,
        default='configs/_base_/filters/one_euro.py',
        help='Config file of the filter to smooth the pose estimation '
        'results. See also --smooth.')
    parser.add_argument(
        '--use-multi-frames',
        action='store_true',
        default=False,
        help='whether to use multi frames for inference in the 2D pose'
        'detection stage. Default: False.')
    parser.add_argument(
        '--online',
        action='store_true',
        default=False,
        help='inference mode. If set to True, can not use future frame'
        'information when using multi frames for inference in the 2D pose'
        'detection stage. Default: False.')

    assert has_mmdet, 'Please install mmdet to run the demo.'

    args = parser.parse_args()
    assert args.show or (args.out_video_root != '')
    assert args.det_config is not None
    assert args.det_checkpoint is not None

    video = mmcv.VideoReader(args.video_path)
    assert video.opened, f'Failed to load video file {args.video_path}'

    # First stage: 2D pose detection
    print('Stage 1: 2D pose detection.')

    print('Initializing model...')
    person_det_model = init_detector(args.det_config,
                                     args.det_checkpoint,
                                     device=args.device.lower())

    pose_det_model = init_pose_model(args.pose_detector_config,
                                     args.pose_detector_checkpoint,
                                     device=args.device.lower())

    assert isinstance(pose_det_model, TopDown), 'Only "TopDown"' \
        'model is supported for the 1st stage (2D pose detection)'

    # frame index offsets for inference, used in multi-frame inference setting
    if args.use_multi_frames:
        assert 'frame_indices_test' in pose_det_model.cfg.data.test.data_cfg
        indices = pose_det_model.cfg.data.test.data_cfg['frame_indices_test']

    pose_det_dataset = pose_det_model.cfg.data['test']['type']
    # get datasetinfo
    dataset_info = pose_det_model.cfg.data['test'].get('dataset_info', None)
    if dataset_info is None:
        warnings.warn(
            'Please set `dataset_info` in the config.'
            'Check https://github.com/open-mmlab/mmpose/pull/663 for details.',
            DeprecationWarning)
    else:
        dataset_info = DatasetInfo(dataset_info)

    pose_det_results_list = []
    next_id = 0
    pose_det_results = []

    # whether to return heatmap, optional
    return_heatmap = False

    # return the output of some desired layers,
    # e.g. use ('backbone', ) to return backbone feature
    output_layer_names = None

    print('Running 2D pose detection inference...')
    for frame_id, cur_frame in enumerate(mmcv.track_iter_progress(video)):
        pose_det_results_last = pose_det_results

        # test a single image, the resulting box is (x1, y1, x2, y2)
        mmdet_results = inference_detector(person_det_model, cur_frame)

        # keep the person class bounding boxes.
        person_det_results = process_mmdet_results(mmdet_results,
                                                   args.det_cat_id)

        if args.use_multi_frames:
            frames = collect_multi_frames(video, frame_id, indices,
                                          args.online)

        # make person results for current image
        pose_det_results, _ = inference_top_down_pose_model(
            pose_det_model,
            frames if args.use_multi_frames else cur_frame,
            person_det_results,
            bbox_thr=args.bbox_thr,
            format='xyxy',
            dataset=pose_det_dataset,
            dataset_info=dataset_info,
            return_heatmap=return_heatmap,
            outputs=output_layer_names)

        # get track id for each person instance
        pose_det_results, next_id = get_track_id(
            pose_det_results,
            pose_det_results_last,
            next_id,
            use_oks=args.use_oks_tracking,
            tracking_thr=args.tracking_thr)

        pose_det_results_list.append(copy.deepcopy(pose_det_results))

    # Second stage: Pose lifting
    print('Stage 2: 2D-to-3D pose lifting.')

    print('Initializing model...')
    pose_lift_model = init_pose_model(args.pose_lifter_config,
                                      args.pose_lifter_checkpoint,
                                      device=args.device.lower())

    assert isinstance(pose_lift_model, PoseLifter), \
        'Only "PoseLifter" model is supported for the 2nd stage ' \
        '(2D-to-3D lifting)'
    pose_lift_dataset = pose_lift_model.cfg.data['test']['type']

    if args.out_video_root == '':
        save_out_video = False
    else:
        os.makedirs(args.out_video_root, exist_ok=True)
        save_out_video = True

    if save_out_video:
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        fps = video.fps
        writer = None

    # convert keypoint definition
    for pose_det_results in pose_det_results_list:
        for res in pose_det_results:
            keypoints = res['keypoints']
            res['keypoints'] = convert_keypoint_definition(
                keypoints, pose_det_dataset, pose_lift_dataset)

    # load temporal padding config from model.data_cfg
    if hasattr(pose_lift_model.cfg, 'test_data_cfg'):
        data_cfg = pose_lift_model.cfg.test_data_cfg
    else:
        data_cfg = pose_lift_model.cfg.data_cfg

    # build pose smoother for temporal refinement
    if args.smooth:
        smoother = Smoother(filter_cfg=args.smooth_filter_cfg,
                            keypoint_key='keypoints',
                            keypoint_dim=2)
    else:
        smoother = None

    num_instances = args.num_instances
    pose_lift_dataset_info = pose_lift_model.cfg.data['test'].get(
        'dataset_info', None)
    if pose_lift_dataset_info is None:
        warnings.warn(
            'Please set `dataset_info` in the config.'
            'Check https://github.com/open-mmlab/mmpose/pull/663 for details.',
            DeprecationWarning)
    else:
        pose_lift_dataset_info = DatasetInfo(pose_lift_dataset_info)

    print('Running 2D-to-3D pose lifting inference...')
    for i, pose_det_results in enumerate(
            mmcv.track_iter_progress(pose_det_results_list)):
        # extract and pad input pose2d sequence
        pose_results_2d = extract_pose_sequence(
            pose_det_results_list,
            frame_idx=i,
            causal=data_cfg.causal,
            seq_len=data_cfg.seq_len,
            step=data_cfg.seq_frame_interval)

        # smooth 2d results
        if smoother:
            pose_results_2d = smoother.smooth(pose_results_2d)

        # 2D-to-3D pose lifting
        pose_lift_results = inference_pose_lifter_model(
            pose_lift_model,
            pose_results_2d=pose_results_2d,
            dataset=pose_lift_dataset,
            dataset_info=pose_lift_dataset_info,
            with_track_id=True,
            image_size=video.resolution,
            norm_pose_2d=args.norm_pose_2d)

        # Pose processing
        pose_lift_results_vis = []
        for idx, res in enumerate(pose_lift_results):
            keypoints_3d = res['keypoints_3d']
            # exchange y,z-axis, and then reverse the direction of x,z-axis
            keypoints_3d = keypoints_3d[..., [0, 2, 1]]
            keypoints_3d[..., 0] = -keypoints_3d[..., 0]
            keypoints_3d[..., 2] = -keypoints_3d[..., 2]
            # rebase height (z-axis)
            if args.rebase_keypoint_height:
                keypoints_3d[..., 2] -= np.min(keypoints_3d[..., 2],
                                               axis=-1,
                                               keepdims=True)
            res['keypoints_3d'] = keypoints_3d
            # add title
            det_res = pose_det_results[idx]
            instance_id = det_res['track_id']
            res['title'] = f'Prediction ({instance_id})'
            # only visualize the target frame
            res['keypoints'] = det_res['keypoints']
            res['bbox'] = det_res['bbox']
            res['track_id'] = instance_id
            pose_lift_results_vis.append(res)

        # Visualization
        if num_instances < 0:
            num_instances = len(pose_lift_results_vis)
        img_vis = vis_3d_pose_result(pose_lift_model,
                                     result=pose_lift_results_vis,
                                     img=video[i],
                                     dataset=pose_lift_dataset,
                                     dataset_info=pose_lift_dataset_info,
                                     out_file=None,
                                     radius=args.radius,
                                     thickness=args.thickness,
                                     num_instances=num_instances,
                                     show=args.show)

        if save_out_video:
            if writer is None:
                writer = cv2.VideoWriter(
                    osp.join(args.out_video_root,
                             f'vis_{osp.basename(args.video_path)}'), fourcc,
                    fps, (img_vis.shape[1], img_vis.shape[0]))
            writer.write(img_vis)

    if save_out_video:
        writer.release()