def test_transform_shape(self):
        input1 = mx.nd.random.uniform(0, 255, shape=(32, 32, 3))
        output1 = image.transform_shape(input1)
        assert output1.shape == (1, 3, 32, 32), "transform_shape method fail. Got %s shape." % (str(output1.shape))

        input2 = mx.nd.random.uniform(0, 255, shape=(28, 28, 3))
        output2 = image.transform_shape(input2, dim_order='NHWC')
        assert output2.shape == (1, 28, 28, 3), "transform_shape method fail. Got %s shape." % (str(output2.shape))
示例#2
0
 def _preprocess(self, data):
     input_shape = self.signature['inputs'][0]['data_shape']
     height, width = input_shape[2:]
     img_arr = image.read(data[0])
     img_arr = image.resize(img_arr, width, height)
     img_arr = image.color_normalize(img_arr, nd.array([127.5]),
                                     nd.array([127.5]))
     img_arr = image.transform_shape(img_arr)
     return [img_arr]
示例#3
0
 def _preprocess(self, data):
     img_list = []
     for idx, img in enumerate(data):
         input_shape = self.signature['inputs'][idx]['data_shape']
         # We are assuming input shape is NCHW
         [h, w] = input_shape[2:]
         img_arr = image.read(img)
         img_arr = image.resize(img_arr, w, h)
         img_arr = image.transform_shape(img_arr)
         img_list.append(img_arr)
     return img_list
示例#4
0
 def _preprocess(self, data):
     img_list = []
     for idx, img in enumerate(data):
         input_shape = self.signature['inputs'][idx][
             'data_shape']  # Input shape is NCHW
         [h, w] = input_shape[2:]
         img_arr = image.read(
             img, 0)  #Set flag to 0 for reading grayscale images
         img_arr = image.resize(img_arr, w, h)
         img_arr = image.transform_shape(img_arr)
         img_list.append(img_arr)
     return img_list
 def _preprocess(self, data):
     img_list = []
     for idx, img in enumerate(data):
         input_shape = self.signature['inputs'][idx]['data_shape']
         # We are assuming input shape is NCHW
         img_arr = image.read(img)
         img_arr, im_scale = rcnn_resize(img_arr,
                                         SHORTER_SIZE,
                                         MAX_SIZE,
                                         stride=IMAGE_STRIDE)
         rgb_mean = mx.nd.array([[[0, 0, 0]]])
         img_arr = img_arr.astype('float32')
         img_arr = img_arr - rgb_mean
         img_arr = image.transform_shape(img_arr)
         img_list.append(img_arr)
         im_info = [[img_arr.shape[2], img_arr.shape[3], im_scale]]
         self.scale = im_scale
         img_list.append(mx.nd.array(im_info))
     return img_list
示例#6
0
 def _preprocess(self, data):
     img_list = []
     for idx, img in enumerate(data):
         input_shape = self.signature['inputs'][idx]['data_shape']
         # We are assuming input shape is NCHW
         [h, w] = input_shape[2:]
         if input_shape[1] == 1:
             img_arr = image.read(img, 0)
         else:
             img_arr = image.read(img)
         img_arr = image.resize(img_arr, w, h)
         rgb_mean = mx.nd.array([123.68, 116.779, 103.939])
         rgb_std = mx.nd.array([58.395, 57.12, 57.375])
         img_arr = img_arr.astype('float32')
         img_arr = mx.image.color_normalize(img_arr,
                                            mean=rgb_mean,
                                            std=rgb_std)
         img_arr = mx.nd.reshape(img_arr, (w, h, input_shape[1]))
         img_arr = image.transform_shape(img_arr)
         img_list.append(img_arr)
     return img_list