示例#1
0
def multi_gpu_test(model,
                   data_loader,
                   tmpdir=None,
                   gpu_collect=False,
                   efficient_test=False):
    results = single_gpu_test(model, data_loader)
    return results
示例#2
0
 def after_train_iter(self, runner):
     """After train epoch hook."""
     if not self.every_n_iters(runner, self.interval):
         return
     from mmseg.apis import single_gpu_test
     runner.log_buffer.clear()
     results = single_gpu_test(runner.model, self.dataloader, show=False)
     self.evaluate(runner, results)
示例#3
0
def multi_gpu_test(model,
                   data_loader,
                   tmpdir=None,
                   gpu_collect=False,
                   pre_eval=False):
    # Pre eval is set by default when training.
    results = single_gpu_test(model, data_loader, pre_eval=True)
    return results
示例#4
0
def main():
    args = parse_args()

    assert args.out or args.eval or args.format_only or args.show \
        or args.show_dir, \
        ('Please specify at least one operation (save/eval/format/show the '
         'results / save the results) with the argument "--out", "--eval"'
         ', "--format-only", "--show" or "--show-dir"')

    if args.eval and args.format_only:
        raise ValueError('--eval and --format_only cannot be both specified')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = mmcv.Config.fromfile(args.config)
    if args.options is not None:
        cfg.merge_from_dict(args.options)
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    distributed = False

    # build the dataloader
    # TODO: support multiple images per gpu (only minor changes are needed)
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(
        dataset,
        samples_per_gpu=1,
        workers_per_gpu=cfg.data.workers_per_gpu,
        dist=distributed,
        shuffle=False)

    # load onnx config and meta
    cfg.model.train_cfg = None
    model = ONNXRuntimeSegmentor(args.model, cfg=cfg, device_id=0)
    model.CLASSES = dataset.CLASSES
    model.PALETTE = dataset.PALETTE

    efficient_test = False
    if args.eval_options is not None:
        efficient_test = args.eval_options.get('efficient_test', False)

    model = MMDataParallel(model, device_ids=[0])
    outputs = single_gpu_test(model, data_loader, args.show, args.show_dir,
                              efficient_test, args.opacity)

    rank, _ = get_dist_info()
    if rank == 0:
        if args.out:
            print(f'\nwriting results to {args.out}')
            mmcv.dump(outputs, args.out)
        kwargs = {} if args.eval_options is None else args.eval_options
        if args.format_only:
            dataset.format_results(outputs, **kwargs)
        if args.eval:
            dataset.evaluate(outputs, args.eval, **kwargs)
示例#5
0
    def _do_evaluate(self, runner):
        """perform evaluation and save ckpt."""
        if not self._should_evaluate(runner):
            return

        from mmseg.apis import single_gpu_test
        results = single_gpu_test(runner.model, self.dataloader, show=False)
        runner.log_buffer.output['eval_iter_num'] = len(self.dataloader)
        key_score = self.evaluate(runner, results)
        if self.save_best:
            self._save_ckpt(runner, key_score)
示例#6
0
def test_single_gpu():
    test_dataset = ExampleDataset()
    data_loader = DataLoader(
        test_dataset,
        batch_size=1,
        sampler=None,
        num_workers=0,
        shuffle=False,
    )
    model = ExampleModel()

    # Test efficient test compatibility (will be deprecated)
    results = single_gpu_test(model, data_loader, efficient_test=True)
    assert len(results) == 1
    pred = np.load(results[0])
    assert isinstance(pred, np.ndarray)
    assert pred.shape == (1, )
    assert pred[0] == 1

    shutil.rmtree('.efficient_test')

    # Test pre_eval
    test_dataset.pre_eval = MagicMock(return_value=['success'])
    results = single_gpu_test(model, data_loader, pre_eval=True)
    assert results == ['success']

    # Test format_only
    test_dataset.format_results = MagicMock(return_value=['success'])
    results = single_gpu_test(model, data_loader, format_only=True)
    assert results == ['success']

    # efficient_test, pre_eval and format_only are mutually exclusive
    with pytest.raises(AssertionError):
        single_gpu_test(
            model,
            dataloader,
            efficient_test=True,
            format_only=True,
            pre_eval=True)
示例#7
0
    def after_train_iter(self, runner):
        """After train epoch hook.

        Override default ``single_gpu_test``.
        """
        if self.by_epoch or not self.every_n_iters(runner, self.interval):
            return
        from mmseg.apis import single_gpu_test
        runner.log_buffer.clear()
        results = single_gpu_test(runner.model,
                                  self.dataloader,
                                  show=False,
                                  efficient_test=self.efficient_test)
        self.evaluate(runner, results)
示例#8
0
    def after_train_iter(self, runner):
        """After train epoch hook."""
        def choice_iters(self, runner):
            return (runner.iter + 1) % 100 == 0 and (runner.iter + 1) >= 37000
            # return (runner.iter + 1) % 100 == 0 and (runner.iter + 1) >= 77000

        if not (self.every_n_iters(runner, self.interval)
                or choice_iters(self, runner)):
            return
        # if not self.every_n_iters(runner, self.interval):
        #     return
        from mmseg.apis import single_gpu_test
        runner.log_buffer.clear()
        results = single_gpu_test(runner.model, self.dataloader, show=False)
        self.evaluate(runner, results)
示例#9
0
def main():
    args = parse_args()

    assert args.out or args.eval or args.format_only or args.show \
           or args.show_dir, \
        ('Please specify at least one operation (save/eval/format/show the '
         'results / save the results) with the argument "--out", "--eval"'
         ', "--format-only", "--show" or "--show-dir"')

    if args.eval and args.format_only:
        raise ValueError('--eval and --format_only cannot be both specified')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = mmcv.Config.fromfile(args.config)
    # work_dir is determined in this priority: CLI > segment in file > filename
    if args.work_dir is not None:
        # update configs according to CLI args if args.work_dir is not None
        cfg.work_dir = args.work_dir
    elif cfg.get('work_dir', None) is None:
        # use config filename as default work_dir if cfg.work_dir is None
        cfg.work_dir = osp.join('./work_dirs',
                                osp.splitext(osp.basename(args.config))[0])

    if args.options is not None:
        cfg.merge_from_dict(args.options)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    if args.aug_test:
        # hard code index
        cfg.data.test.pipeline[1].img_ratios = [
            0.5, 0.75, 1.0, 1.25, 1.5, 1.75
        ]
        cfg.data.test.pipeline[1].flip = True
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # init the logger before other steps
    logger = None
    if args.eval:
        timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
        log_file = osp.join(cfg.work_dir, f'test_{timestamp}.log')
        logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)

    # set random seeds
    if args.seed is not None:
        set_random_seed(args.seed, deterministic=args.deterministic)
        if logger is not None:
            logger.info(f'Set random seed to {args.seed}, deterministic: '
                        f'{args.deterministic}')
        else:
            print(f'Set random seed to {args.seed}, deterministic: '
                  f'{args.deterministic}')

    # build the dataloader
    # TODO: support multiple images per gpu (only minor changes are needed)
    dataset = build_dataset(cfg.data.val, dict(test_mode=True))
    data_loader = build_dataloader(
        dataset,
        samples_per_gpu=1,
        workers_per_gpu=cfg.data.workers_per_gpu,
        dist=distributed,
        shuffle=False)

    # build the model and load checkpoint
    model = build_segmentor(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
    model.CLASSES = checkpoint['meta']['CLASSES']
    model.PALETTE = checkpoint['meta']['PALETTE']

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader, args.show, args.show_dir)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                 args.gpu_collect)

    rank, _ = get_dist_info()
    if rank == 0:
        if args.out:
            print(f'\nwriting results to {args.out}')
            mmcv.dump(outputs, args.out)
        kwargs = {} if args.eval_options is None else args.eval_options
        if args.format_only:
            dataset.format_results(outputs, **kwargs)
        if args.eval:
            dataset.evaluate(outputs, args.eval, logger, **kwargs)
示例#10
0
    G_solver.zero_grad()
    G_loss = loss_seg + loss_aux
    G_loss.backward()
    G_solver.step()

    # print(loss_seg.item(), loss_aux.item())
    logger.info(
        'step:{:5d} G_lr:{:.6f} G_loss:{:.5f} dec:{:.5f} aux:{:.5f}'.format(
            i_iter + 1, G_solver.param_groups[-1]['lr'], G_loss.item(),
            loss_seg.item(), loss_aux.item()))

    # val
    if (i_iter+1) % cfg.evaluation.interval==0 or \
            ((i_iter+1) > cfg.total_iters and (i_iter+1)%100==0):
        outputs = single_gpu_test(model_paral,
                                  val_data_loader,
                                  show=False,
                                  out_dir=None)
        eval_results = val_dataset.evaluate(outputs,
                                            metric='mIoU',
                                            logger=None)
        miou = eval_results['mIoU']
        # {'mIoU': 0.4836061652681801, 'mAcc': 0.5740488995020039, 'aAcc': 0.9015018912774634}
        logger.info(
            'Iter(val) [{:d}]      mIoU: {:.4f}, mAcc: {:.4f}, aAcc: {:.4f}'.
            format(i_iter + 1, eval_results['mIoU'], eval_results['mAcc'],
                   eval_results['aAcc']))

        if miou > max_miou:
            filename = 'iter_{:d}_max_{:.4f}.pth'.format(
                i_iter + 1, miou)  # iter_20000.pth
            filepath = os.path.join(cfg.work_dir, filename)
示例#11
0
def main():
    args = parse_args()

    assert args.out or args.eval or args.format_only or args.show \
        or args.show_dir, \
        ('Please specify at least one operation (save/eval/format/show the '
         'results / save the results) with the argument "--out", "--eval"'
         ', "--format-only", "--show" or "--show-dir"')

    if args.eval and args.format_only:
        raise ValueError('--eval and --format_only cannot be both specified')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = mmcv.Config.fromfile(args.config)
    if args.options is not None:
        cfg.merge_from_dict(args.options)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    if args.aug_test:
        # hard code index
        cfg.data.test.pipeline[1].img_ratios = [
            0.5, 0.75, 1.0, 1.25, 1.5, 1.75
        ]
        cfg.data.test.pipeline[1].flip = True
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    # TODO: support multiple images per gpu (only minor changes are needed)
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(dataset,
                                   samples_per_gpu=1,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    # build the model and load checkpoint
    model = build_segmentor(cfg.model, train_cfg=None, test_cfg=cfg.test_cfg)
    checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
    model.CLASSES = checkpoint['meta']['CLASSES']
    model.PALETTE = checkpoint['meta']['PALETTE']

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        outputs = single_gpu_test(model, data_loader, args.show, args.show_dir)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                 args.gpu_collect)

    rank, _ = get_dist_info()
    if rank == 0:
        if args.out:
            print(f'\nwriting results to {args.out}')
            mmcv.dump(outputs, args.out)
        kwargs = {} if args.eval_options is None else args.eval_options
        #  if args.format_only:
        kwargs = {
            'imgfile_prefix':
            "{}/results".format(os.path.dirname(args.checkpoint))
        }
        print('\nsave to ',
              "{}/results".format(os.path.dirname(args.checkpoint)))
        dataset.format_results(outputs, **kwargs)
        if args.eval:
            dataset.evaluate(outputs, args.eval, **kwargs)
示例#12
0
def main():
    args = parse_args()

    assert args.out or args.eval or args.format_only or args.show \
        or args.show_dir, \
        ('Please specify at least one operation (save/eval/format/show the '
         'results / save the results) with the argument "--out", "--eval"'
         ', "--format-only", "--show" or "--show-dir"')

    if args.eval and args.format_only:
        raise ValueError('--eval and --format_only cannot be both specified')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = mmcv.Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    distributed = False

    # build the dataloader
    # TODO: support multiple images per gpu (only minor changes are needed)
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(dataset,
                                   samples_per_gpu=1,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    # load onnx config and meta
    cfg.model.train_cfg = None

    if args.backend == 'onnxruntime':
        model = ONNXRuntimeSegmentor(args.model, cfg=cfg, device_id=0)
    elif args.backend == 'tensorrt':
        model = TensorRTSegmentor(args.model, cfg=cfg, device_id=0)

    model.CLASSES = dataset.CLASSES
    model.PALETTE = dataset.PALETTE

    # clean gpu memory when starting a new evaluation.
    torch.cuda.empty_cache()
    eval_kwargs = {} if args.eval_options is None else args.eval_options

    # Deprecated
    efficient_test = eval_kwargs.get('efficient_test', False)
    if efficient_test:
        warnings.warn(
            '``efficient_test=True`` does not have effect in tools/test.py, '
            'the evaluation and format results are CPU memory efficient by '
            'default')

    eval_on_format_results = (args.eval is not None
                              and 'cityscapes' in args.eval)
    if eval_on_format_results:
        assert len(args.eval) == 1, 'eval on format results is not ' \
                                    'applicable for metrics other than ' \
                                    'cityscapes'
    if args.format_only or eval_on_format_results:
        if 'imgfile_prefix' in eval_kwargs:
            tmpdir = eval_kwargs['imgfile_prefix']
        else:
            tmpdir = '.format_cityscapes'
            eval_kwargs.setdefault('imgfile_prefix', tmpdir)
        mmcv.mkdir_or_exist(tmpdir)
    else:
        tmpdir = None

    model = MMDataParallel(model, device_ids=[0])
    results = single_gpu_test(model,
                              data_loader,
                              args.show,
                              args.show_dir,
                              False,
                              args.opacity,
                              pre_eval=args.eval is not None
                              and not eval_on_format_results,
                              format_only=args.format_only
                              or eval_on_format_results,
                              format_args=eval_kwargs)

    rank, _ = get_dist_info()
    if rank == 0:
        if args.out:
            warnings.warn(
                'The behavior of ``args.out`` has been changed since MMSeg '
                'v0.16, the pickled outputs could be seg map as type of '
                'np.array, pre-eval results or file paths for '
                '``dataset.format_results()``.')
            print(f'\nwriting results to {args.out}')
            mmcv.dump(results, args.out)
        if args.eval:
            dataset.evaluate(results, args.eval, **eval_kwargs)
        if tmpdir is not None and eval_on_format_results:
            # remove tmp dir when cityscapes evaluation
            shutil.rmtree(tmpdir)
示例#13
0
def main():
    args = parse_args()

    assert args.out or args.eval or args.format_only or args.show \
        or args.show_dir, \
        ('Please specify at least one operation (save/eval/format/show the '
         'results / save the results) with the argument "--out", "--eval"'
         ', "--format-only", "--show" or "--show-dir"')

    if args.eval and args.format_only:
        raise ValueError('--eval and --format_only cannot be both specified')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = mmcv.Config.fromfile(args.config)
    if args.options is not None:
        cfg.merge_from_dict(args.options)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    if args.aug_test:
        # hard code index
        cfg.data.test.pipeline[1].img_ratios = [
            0.5, 0.75, 1.0, 1.25, 1.5, 1.75
        ]
        cfg.data.test.pipeline[1].flip = True
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    rank, _ = get_dist_info()
    # allows not to create
    if args.work_dir is not None and rank == 0:
        mmcv.mkdir_or_exist(osp.abspath(args.work_dir))
        timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
        json_file = osp.join(args.work_dir, f'eval_{timestamp}.json')

    # build the dataloader
    # TODO: support multiple images per gpu (only minor changes are needed)
    dataset = build_dataset(cfg.data.test)
    data_loader = build_dataloader(dataset,
                                   samples_per_gpu=1,
                                   workers_per_gpu=cfg.data.workers_per_gpu,
                                   dist=distributed,
                                   shuffle=False)

    # build the model and load checkpoint
    cfg.model.train_cfg = None
    model = build_segmentor(cfg.model, test_cfg=cfg.get('test_cfg'))
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
    if 'CLASSES' in checkpoint.get('meta', {}):
        model.CLASSES = checkpoint['meta']['CLASSES']
    else:
        print('"CLASSES" not found in meta, use dataset.CLASSES instead')
        model.CLASSES = dataset.CLASSES
    if 'PALETTE' in checkpoint.get('meta', {}):
        model.PALETTE = checkpoint['meta']['PALETTE']
    else:
        print('"PALETTE" not found in meta, use dataset.PALETTE instead')
        model.PALETTE = dataset.PALETTE

    # clean gpu memory when starting a new evaluation.
    torch.cuda.empty_cache()
    eval_kwargs = {} if args.eval_options is None else args.eval_options

    # Deprecated
    efficient_test = eval_kwargs.get('efficient_test', False)
    if efficient_test:
        warnings.warn(
            '``efficient_test=True`` does not have effect in tools/test.py, '
            'the evaluation and format results are CPU memory efficient by '
            'default')

    eval_on_format_results = (args.eval is not None
                              and 'cityscapes' in args.eval)
    if eval_on_format_results:
        assert len(args.eval) == 1, 'eval on format results is not ' \
                                    'applicable for metrics other than ' \
                                    'cityscapes'
    if args.format_only or eval_on_format_results:
        if 'imgfile_prefix' in eval_kwargs:
            tmpdir = eval_kwargs['imgfile_prefix']
        else:
            tmpdir = '.format_cityscapes'
            eval_kwargs.setdefault('imgfile_prefix', tmpdir)
        mmcv.mkdir_or_exist(tmpdir)
    else:
        tmpdir = None

    if not distributed:
        model = MMDataParallel(model, device_ids=[0])
        results = single_gpu_test(model,
                                  data_loader,
                                  args.show,
                                  args.show_dir,
                                  False,
                                  args.opacity,
                                  pre_eval=args.eval is not None
                                  and not eval_on_format_results,
                                  format_only=args.format_only
                                  or eval_on_format_results,
                                  format_args=eval_kwargs)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        results = multi_gpu_test(model,
                                 data_loader,
                                 args.tmpdir,
                                 args.gpu_collect,
                                 False,
                                 pre_eval=args.eval is not None
                                 and not eval_on_format_results,
                                 format_only=args.format_only
                                 or eval_on_format_results,
                                 format_args=eval_kwargs)

    rank, _ = get_dist_info()
    if rank == 0:
        if args.out:
            warnings.warn(
                'The behavior of ``args.out`` has been changed since MMSeg '
                'v0.16, the pickled outputs could be seg map as type of '
                'np.array, pre-eval results or file paths for '
                '``dataset.format_results()``.')
            print(f'\nwriting results to {args.out}')
            mmcv.dump(results, args.out)
        if args.eval:
            eval_kwargs.update(metric=args.eval)
            metric = dataset.evaluate(results, **eval_kwargs)
            metric_dict = dict(config=args.config, metric=metric)
            if args.work_dir is not None and rank == 0:
                mmcv.dump(metric_dict, json_file, indent=4)
            if tmpdir is not None and eval_on_format_results:
                # remove tmp dir when cityscapes evaluation
                shutil.rmtree(tmpdir)
示例#14
0
#     model = MMDataParallel(model, device_ids=[0])
#     # outputs = single_gpu_test(model, data_loader, args.show, args.show_dir)
#     outputs = single_gpu_test(model, data_loader, show=False, out_dir=None)
# else:
#     model = MMDistributedDataParallel(
#         model.cuda(),
#         device_ids=[torch.cuda.current_device()],
#         broadcast_buffers=False)
#     outputs = multi_gpu_test(model, data_loader, args.tmpdir,
#                              args.gpu_collect)
# dataset.evaluate(outputs, metric='mIoU', logger=None)

model = MMDataParallel(model1.student, device_ids=[0])
print('======================')

outputs = single_gpu_test(model, data_loader, show=False, out_dir=None)

dataset.evaluate(outputs, metric='mIoU', logger=None)

# rank, _ = get_dist_info()
# if rank == 0:
#     if args.out:
#         print(f'\nwriting results to {args.out}')
#         mmcv.dump(outputs, args.out)
#     kwargs = {} if args.eval_options is None else args.eval_options
#     if args.format_only:
#         dataset.format_results(outputs, **kwargs)
#     if args.eval:
#         dataset.evaluate(outputs, args.eval, **kwargs)
# dataset.evaluate(outputs, args.eval, **kwargs)
示例#15
0
def main():
    args = parse_args()
    assert args.out or args.eval or args.format_only or args.show \
        or args.show_dir, \
        ('Please specify at least one operation (save/eval/format/show the '
         'results / save the results) with the argument "--out", "--eval"'
         ', "--format-only", "--show" or "--show-dir"')

    if args.eval and args.format_only:
        raise ValueError('--eval and --format_only cannot be both specified')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = mmcv.Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)

    # set multi-process settings
    setup_multi_processes(cfg)

    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    if args.aug_test:
        # hard code index
        cfg.data.test.pipeline[1].img_ratios = [
            0.5, 0.75, 1.0, 1.25, 1.5, 1.75
        ]
        cfg.data.test.pipeline[1].flip = True
    cfg.model.pretrained = None
    cfg.data.test.test_mode = True

    if args.gpu_id is not None:
        cfg.gpu_ids = [args.gpu_id]

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        cfg.gpu_ids = [args.gpu_id]
        distributed = False
        if len(cfg.gpu_ids) > 1:
            warnings.warn(f'The gpu-ids is reset from {cfg.gpu_ids} to '
                          f'{cfg.gpu_ids[0:1]} to avoid potential error in '
                          'non-distribute testing time.')
            cfg.gpu_ids = cfg.gpu_ids[0:1]
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    rank, _ = get_dist_info()
    # allows not to create
    if args.work_dir is not None and rank == 0:
        mmcv.mkdir_or_exist(osp.abspath(args.work_dir))
        timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
        if args.aug_test:
            json_file = osp.join(args.work_dir,
                                 f'eval_multi_scale_{timestamp}.json')
        else:
            json_file = osp.join(args.work_dir,
                                 f'eval_single_scale_{timestamp}.json')
    elif rank == 0:
        work_dir = osp.join('./work_dirs',
                            osp.splitext(osp.basename(args.config))[0])
        mmcv.mkdir_or_exist(osp.abspath(work_dir))
        timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
        if args.aug_test:
            json_file = osp.join(work_dir,
                                 f'eval_multi_scale_{timestamp}.json')
        else:
            json_file = osp.join(work_dir,
                                 f'eval_single_scale_{timestamp}.json')

    # build the dataloader
    # TODO: support multiple images per gpu (only minor changes are needed)
    dataset = build_dataset(cfg.data.test)
    # The default loader config
    loader_cfg = dict(
        # cfg.gpus will be ignored if distributed
        num_gpus=len(cfg.gpu_ids),
        dist=distributed,
        shuffle=False)
    # The overall dataloader settings
    loader_cfg.update({
        k: v
        for k, v in cfg.data.items() if k not in [
            'train', 'val', 'test', 'train_dataloader', 'val_dataloader',
            'test_dataloader'
        ]
    })
    test_loader_cfg = {
        **loader_cfg,
        'samples_per_gpu': 1,
        'shuffle': False,  # Not shuffle by default
        **cfg.data.get('test_dataloader', {})
    }
    # build the dataloader
    data_loader = build_dataloader(dataset, **test_loader_cfg)

    # build the model and load checkpoint
    cfg.model.train_cfg = None
    model = build_segmentor(cfg.model, test_cfg=cfg.get('test_cfg'))
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    checkpoint = load_checkpoint(model, args.checkpoint, map_location='cpu')
    if 'CLASSES' in checkpoint.get('meta', {}):
        model.CLASSES = checkpoint['meta']['CLASSES']
    else:
        print('"CLASSES" not found in meta, use dataset.CLASSES instead')
        model.CLASSES = dataset.CLASSES
    if 'PALETTE' in checkpoint.get('meta', {}):
        model.PALETTE = checkpoint['meta']['PALETTE']
    else:
        print('"PALETTE" not found in meta, use dataset.PALETTE instead')
        model.PALETTE = dataset.PALETTE

    # clean gpu memory when starting a new evaluation.
    torch.cuda.empty_cache()
    eval_kwargs = {} if args.eval_options is None else args.eval_options

    # Deprecated
    efficient_test = eval_kwargs.get('efficient_test', False)
    if efficient_test:
        warnings.warn(
            '``efficient_test=True`` does not have effect in tools/test.py, '
            'the evaluation and format results are CPU memory efficient by '
            'default')

    eval_on_format_results = (args.eval is not None
                              and 'cityscapes' in args.eval)
    if eval_on_format_results:
        assert len(args.eval) == 1, 'eval on format results is not ' \
                                    'applicable for metrics other than ' \
                                    'cityscapes'
    if args.format_only or eval_on_format_results:
        if 'imgfile_prefix' in eval_kwargs:
            tmpdir = eval_kwargs['imgfile_prefix']
        else:
            tmpdir = '.format_cityscapes'
            eval_kwargs.setdefault('imgfile_prefix', tmpdir)
        mmcv.mkdir_or_exist(tmpdir)
    else:
        tmpdir = None

    if not distributed:
        warnings.warn(
            'SyncBN is only supported with DDP. To be compatible with DP, '
            'we convert SyncBN to BN. Please use dist_train.sh which can '
            'avoid this error.')
        if not torch.cuda.is_available():
            assert digit_version(mmcv.__version__) >= digit_version('1.4.4'), \
                'Please use MMCV >= 1.4.4 for CPU training!'
        model = revert_sync_batchnorm(model)
        model = MMDataParallel(model, device_ids=cfg.gpu_ids)
        results = single_gpu_test(model,
                                  data_loader,
                                  args.show,
                                  args.show_dir,
                                  False,
                                  args.opacity,
                                  pre_eval=args.eval is not None
                                  and not eval_on_format_results,
                                  format_only=args.format_only
                                  or eval_on_format_results,
                                  format_args=eval_kwargs)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        results = multi_gpu_test(model,
                                 data_loader,
                                 args.tmpdir,
                                 args.gpu_collect,
                                 False,
                                 pre_eval=args.eval is not None
                                 and not eval_on_format_results,
                                 format_only=args.format_only
                                 or eval_on_format_results,
                                 format_args=eval_kwargs)

    rank, _ = get_dist_info()
    if rank == 0:
        if args.out:
            warnings.warn(
                'The behavior of ``args.out`` has been changed since MMSeg '
                'v0.16, the pickled outputs could be seg map as type of '
                'np.array, pre-eval results or file paths for '
                '``dataset.format_results()``.')
            print(f'\nwriting results to {args.out}')
            mmcv.dump(results, args.out)
        if args.eval:
            eval_kwargs.update(metric=args.eval)
            metric = dataset.evaluate(results, **eval_kwargs)
            metric_dict = dict(config=args.config, metric=metric)
            mmcv.dump(metric_dict, json_file, indent=4)
            if tmpdir is not None and eval_on_format_results:
                # remove tmp dir when cityscapes evaluation
                shutil.rmtree(tmpdir)