def exclude_h_on_SS(model): rm = model.get_restraints_manager() bond_proxies_simple, asu = rm.geometry.get_all_bond_proxies( sites_cart=model.get_sites_cart()) els = model.get_hierarchy().atoms().extract_element() ss_i_seqs = [] all_proxies = [p for p in bond_proxies_simple] for proxy in asu: all_proxies.append(proxy) for proxy in all_proxies: if (isinstance(proxy, ext.bond_simple_proxy)): i, j = proxy.i_seqs elif (isinstance(proxy, ext.bond_asu_proxy)): i, j = proxy.i_seq, proxy.j_seq else: assert 0 # never goes here if ([els[i], els[j] ].count("S") == 2): # XXX may be coordinated if metal edits used ss_i_seqs.extend([i, j]) sel_remove = flex.size_t() for proxy in all_proxies: if (isinstance(proxy, ext.bond_simple_proxy)): i, j = proxy.i_seqs elif (isinstance(proxy, ext.bond_asu_proxy)): i, j = proxy.i_seq, proxy.j_seq else: assert 0 # never goes here if (els[i] in ["H", "D"] and j in ss_i_seqs): sel_remove.append(i) if (els[j] in ["H", "D"] and i in ss_i_seqs): sel_remove.append(j) return model.select(~flex.bool(model.size(), sel_remove))
def exclude_h_on_coordinated_S(model): # XXX if edits used it should be like in exclude_h_on_SS rm = model.get_restraints_manager().geometry els = model.get_hierarchy().atoms().extract_element() # Find possibly coordinated S exclusion_list = ["H","D","T","S","O","P","N","C","SE"] sel_s = [] for proxy in rm.pair_proxies().nonbonded_proxies.simple: i,j = proxy.i_seqs if(els[i] == "S" and not els[j] in exclusion_list): sel_s.append(i) if(els[j] == "S" and not els[i] in exclusion_list): sel_s.append(j) # Find H attached to possibly coordinated S bond_proxies_simple, asu = rm.get_all_bond_proxies( sites_cart = model.get_sites_cart()) sel_remove = flex.size_t() for proxy in bond_proxies_simple: i,j = proxy.i_seqs if(els[i] in ["H","D"] and j in sel_s): sel_remove.append(i) if(els[j] in ["H","D"] and i in sel_s): sel_remove.append(j) return model.select(~flex.bool(model.size(), sel_remove))
def stats(model, prefix, no_ticks=True): # Get rid of H, multi-model, no-protein and single-atom residue models if (model.percent_of_single_atom_residues() > 20): return None sel = model.selection(string="protein") if (sel.count(True) == 0): return None ssr = "protein and not (element H or element D or resname UNX or resname UNK or resname UNL)" sel = model.selection(string=ssr) model = model.select(sel) if (len(model.get_hierarchy().models()) > 1): return None # Add H; this looses CRYST1 ! rr = run_reduce_with_timeout( stdin_lines=model.get_hierarchy().as_pdb_string().splitlines(), file_name=None, parameters="-oh -his -flip -keep -allalt -pen9999 -", override_auto_timeout_with=None) # Create model; this is a single-model pure protein with new H added pdb_inp = iotbx.pdb.input(source_info=None, lines=rr.stdout_lines) model = mmtbx.model.manager(model_input=None, build_grm=True, pdb_hierarchy=pdb_inp.construct_hierarchy(), process_input=True, log=null_out()) box = uctbx.non_crystallographic_unit_cell_with_the_sites_in_its_center( sites_cart=model.get_sites_cart(), buffer_layer=5) model.set_sites_cart(box.sites_cart) model._crystal_symmetry = box.crystal_symmetry() # N = 10 SS = get_ss_selections(hierarchy=model.get_hierarchy()) HB_all = find( model=model.select(flex.bool(model.size(), True)), a_DHA_cutoff=90).get_params_as_arrays(replace_with_empty_threshold=N) HB_alpha = find( model=model.select(SS.both.h_sel), a_DHA_cutoff=90).get_params_as_arrays(replace_with_empty_threshold=N) HB_beta = find( model=model.select(SS.both.s_sel), a_DHA_cutoff=90).get_params_as_arrays(replace_with_empty_threshold=N) print(HB_all.d_HA.size()) result_dict = {} result_dict["all"] = HB_all result_dict["alpha"] = HB_alpha result_dict["beta"] = HB_beta # result_dict["loop"] = get_selected(sel=loop_sel) # Load histograms for reference high-resolution d_HA and a_DHA pkl_fn = libtbx.env.find_in_repositories( relative_path="mmtbx") + "/nci/d_HA_and_a_DHA_high_res.pkl" assert os.path.isfile(pkl_fn) ref = easy_pickle.load(pkl_fn) # import matplotlib as mpl mpl.use('Agg') import matplotlib.pyplot as plt fig = plt.figure(figsize=(10, 10)) kwargs = dict(histtype='bar', bins=20, range=[1.6, 3.0], alpha=.8) for j, it in enumerate([["alpha", 1], ["beta", 3], ["all", 5]]): key, i = it ax = plt.subplot(int("32%d" % i)) if (no_ticks): #ax.set_xticks([]) ax.set_yticks([]) if (j in [0, 1]): ax.tick_params(bottom=False) ax.set_xticklabels([]) ax.tick_params(axis="x", labelsize=12) ax.tick_params(axis="y", labelsize=12, left=False, pad=-2) ax.text(0.98, 0.92, key, size=12, horizontalalignment='right', transform=ax.transAxes) HB = result_dict[key] if HB is None: continue w1 = np.ones_like(HB.d_HA) / HB.d_HA.size() ax.hist(HB.d_HA, color="orangered", weights=w1, rwidth=0.3, **kwargs) # start, end1, end2 = 0, max(ref.distances[key].vals), \ round(max(ref.distances[key].vals),2) if (not no_ticks): plt.yticks([0.01, end1], ["0", end2], visible=True, rotation="horizontal") if (key == "alpha"): plt.ylim(0, end2 + 0.02) elif (key == "beta"): plt.ylim(0, end2 + 0.02) elif (key == "all"): plt.ylim(0, end2 + 0.02) else: assert 0 # if (j == 0): ax.set_title("Distance", size=15) bins = list(flex.double(ref.distances[key].bins)) ax.bar(bins, ref.distances[key].vals, alpha=.3, width=0.07) # kwargs = dict(histtype='bar', bins=20, range=[90, 180], alpha=.8) for j, it in enumerate([["alpha", 2], ["beta", 4], ["all", 6]]): key, i = it ax = plt.subplot(int("32%d" % i)) if (j in [0, 1]): ax.tick_params(bottom=False) ax.set_xticklabels([]) if (no_ticks): #ax.set_xticks([]) ax.set_yticks([]) ax.tick_params(axis="x", labelsize=12) ax.tick_params(axis="y", labelsize=12, left=False, pad=-2) ax.text(0.98, 0.92, key, size=12, horizontalalignment='right', transform=ax.transAxes) ax.text(0.98, 0.92, key, size=12, horizontalalignment='right', transform=ax.transAxes) #if(j in [0,1]): ax.plot_params(bottom=False) HB = result_dict[key] if HB is None: continue w1 = np.ones_like(HB.a_DHA) / HB.a_DHA.size() ax.hist(HB.a_DHA, color="orangered", weights=w1, rwidth=0.3, **kwargs) # start, end1, end2 = 0, max(ref.angles[key].vals), \ round(max(ref.angles[key].vals),2) if (not no_ticks): plt.yticks([0.01, end1], ["0", end2], visible=True, rotation="horizontal") if (key == "alpha"): plt.ylim(0, end2 + 0.02) elif (key == "beta"): plt.ylim(0, end2 + 0.02) elif (key == "all"): plt.ylim(0, end2 + 0.02) else: assert 0 # if (j == 0): ax.set_title("Angle", size=15) ax.bar(ref.angles[key].bins, ref.angles[key].vals, width=4.5, alpha=.3) plt.subplots_adjust(wspace=0.12, hspace=0.025) if (no_ticks): plt.subplots_adjust(wspace=0.025, hspace=0.025) #fig.savefig("%s.png"%prefix, dpi=1000) fig.savefig("%s.pdf" % prefix)