示例#1
0
  def ml_normalisation(self, aniso=False):
    # estimate number of residues per unit cell
    mr = matthews.matthews_rupp(self.intensities.crystal_symmetry())
    n_residues = mr.n_residues

    # estimate B-factor and scale factors for normalisation
    if aniso:
      normalisation = absolute_scaling.ml_aniso_absolute_scaling(
        self.intensities, n_residues=n_residues)
      u_star = normalisation.u_star
    else:
      normalisation = absolute_scaling.ml_iso_absolute_scaling(
        self.intensities, n_residues=n_residues)
      u_star = adptbx.b_as_u(
        adptbx.u_iso_as_u_star(
          self.intensities.unit_cell(), normalisation.b_wilson))

    # apply scales
    self.intensities = self.intensities.customized_copy(
      data=scaling.ml_normalise_aniso(
        self.intensities.indices(), self.intensities.data(),
        normalisation.p_scale, self.intensities.unit_cell(),
        u_star),
      sigmas=scaling.ml_normalise_aniso(
        self.intensities.indices(), self.intensities.sigmas(),
        normalisation.p_scale, self.intensities.unit_cell(),
        u_star)).set_info(self.intensities.info())

    # record output in log file
    s = StringIO()
    mr.show(out=s)
    normalisation.show(out=s)
    logger.info(s.getvalue())
def anisotropic_correction(cache_0,
                           p_scale,
                           u_star,
                           b_add=None,
                           must_be_greater_than=0.):
  ## Make sure that u_star is not rwgk scaled, i.e. like you get it from
  ## the ml_absolute_scale_aniso routine (!which is !!NOT!! scaled!)
  work_array = None
  try:
    work_array = cache_0.input.select( cache_0.input.data() > must_be_greater_than)
  except KeyboardInterrupt: raise
  except Exception: pass
  if work_array is None:
    work_array = cache_0.select( cache_0.data() > must_be_greater_than)

  change_back_to_intensity=False
  if work_array.is_xray_intensity_array():
    work_array = work_array.f_sq_as_f()
    change_back_to_intensity=True

  assert not work_array.is_xray_intensity_array()

  if b_add is not None:
    u_star_add =  adptbx.b_iso_as_u_star( work_array.unit_cell(),
                                          b_add )
    u_star = u_star+u_star_add



  corrected_amplitudes = scaling.ml_normalise_aniso( work_array.indices(),
                                                     work_array.data(),
                                                     p_scale,
                                                     work_array.unit_cell(),
                                                     u_star )
  if work_array.sigmas() is not None:
    corrected_sigmas = scaling.ml_normalise_aniso( work_array.indices(),
                                                   work_array.sigmas(),
                                                   p_scale,
                                                   work_array.unit_cell(),
                                                   u_star )
  else:
    corrected_sigmas = None


  work_array = work_array.customized_copy(
    data = corrected_amplitudes,
    sigmas = corrected_sigmas ).set_observation_type(work_array)
  if change_back_to_intensity:
    # XXX check for floating-point overflows (which trigger the Boost trap
    # and crash the interpreter).  The only known case is 2q8o:IOBS2,SIGIOBS2
    # which is missing nearly all acentric hkls but it clearly points to a bug
    # in this routine when dealing with pathological data.
    f_max = flex.max(work_array.data())
    if (not f_max < math.sqrt(sys.float_info.max)) :
      raise OverflowError("Amplitudes will exceed floating point limit if "+
        "converted to intensities (max F = %e)." % f_max)
    work_array = work_array.f_as_f_sq()
  return work_array
示例#3
0
def anisotropic_correction(cache_0,
                           p_scale,
                           u_star,
                           b_add=None,
                           must_be_greater_than=0.):
    ## Make sure that u_star is not rwgk scaled, i.e. like you get it from
    ## the ml_absolute_scale_aniso routine (!which is !!NOT!! scaled!)
    work_array = None
    try:
        work_array = cache_0.input.select(
            cache_0.input.data() > must_be_greater_than)
    except KeyboardInterrupt:
        raise
    except Exception:
        pass
    if work_array is None:
        work_array = cache_0.select(cache_0.data() > must_be_greater_than)

    change_back_to_intensity = False
    if work_array.is_xray_intensity_array():
        work_array = work_array.f_sq_as_f()
        change_back_to_intensity = True

    assert not work_array.is_xray_intensity_array()

    if b_add is not None:
        u_star_add = adptbx.b_iso_as_u_star(work_array.unit_cell(), b_add)
        u_star = u_star + u_star_add

    corrected_amplitudes = scaling.ml_normalise_aniso(work_array.indices(),
                                                      work_array.data(),
                                                      p_scale,
                                                      work_array.unit_cell(),
                                                      u_star)
    if work_array.sigmas() is not None:
        corrected_sigmas = scaling.ml_normalise_aniso(work_array.indices(),
                                                      work_array.sigmas(),
                                                      p_scale,
                                                      work_array.unit_cell(),
                                                      u_star)
    else:
        corrected_sigmas = None

    work_array = work_array.customized_copy(
        data=corrected_amplitudes,
        sigmas=corrected_sigmas).set_observation_type(work_array)
    if change_back_to_intensity:
        # XXX check for floating-point overflows (which trigger the Boost trap
        # and crash the interpreter).  The only known case is 2q8o:IOBS2,SIGIOBS2
        # which is missing nearly all acentric hkls but it clearly points to a bug
        # in this routine when dealing with pathological data.
        f_max = flex.max(work_array.data())
        if (not f_max < math.sqrt(sys.float_info.max)):
            raise OverflowError(
                "Amplitudes will exceed floating point limit if " +
                "converted to intensities (max F = %e)." % f_max)
        work_array = work_array.f_as_f_sq()
    return work_array
示例#4
0
    def _ml_normalisation(intensities, aniso):
        # estimate number of residues per unit cell
        mr = matthews.matthews_rupp(intensities.crystal_symmetry())
        n_residues = mr.n_residues

        # estimate B-factor and scale factors for normalisation
        if aniso:
            normalisation = absolute_scaling.ml_aniso_absolute_scaling(
                intensities, n_residues=n_residues
            )
            u_star = normalisation.u_star
        else:
            normalisation = absolute_scaling.ml_iso_absolute_scaling(
                intensities, n_residues=n_residues
            )
            u_star = adptbx.b_as_u(
                adptbx.u_iso_as_u_star(intensities.unit_cell(), normalisation.b_wilson)
            )

        # record output in log file
        if aniso:
            b_cart = normalisation.b_cart
            logger.info("ML estimate of overall B_cart value:")
            logger.info(
                """\
  %5.2f, %5.2f, %5.2f
  %12.2f, %5.2f
  %19.2f"""
                % (b_cart[0], b_cart[3], b_cart[4], b_cart[1], b_cart[5], b_cart[2])
            )
        else:
            logger.info("ML estimate of overall B value:")
            logger.info("   %5.2f A**2" % normalisation.b_wilson)
        logger.info("ML estimate of  -log of scale factor:")
        logger.info("  %5.2f" % (normalisation.p_scale))

        s = StringIO()
        mr.show(out=s)
        normalisation.show(out=s)
        logger.debug(s.getvalue())

        # apply scales
        return intensities.customized_copy(
            data=scaling.ml_normalise_aniso(
                intensities.indices(),
                intensities.data(),
                normalisation.p_scale,
                intensities.unit_cell(),
                u_star,
            ),
            sigmas=scaling.ml_normalise_aniso(
                intensities.indices(),
                intensities.sigmas(),
                normalisation.p_scale,
                intensities.unit_cell(),
                u_star,
            ),
        )