示例#1
0
def test_cross_val_predict():
    """Test cross_val_predict with predict_proba."""
    from sklearn.linear_model import LinearRegression
    from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
    from sklearn.base import BaseEstimator, clone
    from sklearn.model_selection import cross_val_predict
    rng = np.random.RandomState(42)
    X = rng.randn(10, 1, 3)
    y = rng.randint(0, 2, 10)

    estimator = SlidingEstimator(LinearRegression())
    cross_val_predict(estimator, X, y, cv=2)

    class Classifier(BaseEstimator):
        """Moch class that does not have classes_ attribute."""
        def __init__(self):
            self.base_estimator = LinearDiscriminantAnalysis()

        def fit(self, X, y):
            self.estimator_ = clone(self.base_estimator).fit(X, y)
            return self

        def predict_proba(self, X):
            return self.estimator_.predict_proba(X)

    with pytest.raises(AttributeError, match="classes_ attribute"):
        estimator = SlidingEstimator(Classifier())
        cross_val_predict(estimator, X, y, method='predict_proba', cv=2)

    estimator = SlidingEstimator(LinearDiscriminantAnalysis())
    cross_val_predict(estimator, X, y, method='predict_proba', cv=2)
示例#2
0
def test_get_coef_inverse_transform(inverse, Scale, kwargs):
    """Test get_coef with and without inverse_transform."""
    from sklearn.linear_model import Ridge
    from sklearn.pipeline import make_pipeline
    lm_regression = LinearModel(Ridge())
    X, y, A = _make_data(n_samples=1000, n_features=3, n_targets=1)
    # Check with search_light and combination of preprocessing ending with sl:
    # slider = SlidingEstimator(make_pipeline(StandardScaler(), lm_regression))
    # XXX : line above should work but does not as only last step is
    # used in get_coef ...
    slider = SlidingEstimator(make_pipeline(lm_regression))
    X = np.transpose([X, -X], [1, 2, 0])  # invert X across 2 time samples
    clf = make_pipeline(Scale(**kwargs), slider)
    clf.fit(X, y)
    patterns = get_coef(clf, 'patterns_', inverse)
    filters = get_coef(clf, 'filters_', inverse)
    assert_array_equal(filters.shape, patterns.shape, X.shape[1:])
    # the two time samples get inverted patterns
    assert_equal(patterns[0, 0], -patterns[0, 1])
    for t in [0, 1]:
        filters_t = get_coef(
            clf.named_steps['slidingestimator'].estimators_[t], 'filters_',
            False)
        if Scale is _Noop:
            assert_array_equal(filters_t, filters[:, t])
示例#3
0
def test_cross_val_multiscore():
    """Test cross_val_multiscore for computing scores on decoding over time.
    """
    from sklearn.model_selection import KFold, cross_val_score
    from sklearn.linear_model import LogisticRegression

    # compare to cross-val-score
    X = np.random.rand(20, 3)
    y = np.arange(20) % 2
    clf = LogisticRegression()
    cv = KFold(2, random_state=0)
    assert_array_equal(cross_val_score(clf, X, y, cv=cv),
                       cross_val_multiscore(clf, X, y, cv=cv))

    # Test with search light
    X = np.random.rand(20, 4, 3)
    y = np.arange(20) % 2
    clf = SlidingEstimator(LogisticRegression(), scoring='accuracy')
    scores_acc = cross_val_multiscore(clf, X, y, cv=cv)
    assert_array_equal(np.shape(scores_acc), [2, 3])

    # check values
    scores_acc_manual = list()
    for train, test in cv.split(X, y):
        clf.fit(X[train], y[train])
        scores_acc_manual.append(clf.score(X[test], y[test]))
    assert_array_equal(scores_acc, scores_acc_manual)

    # check scoring metric
    # raise an error if scoring is defined at cross-val-score level and
    # search light, because search light does not return a 1-dimensional
    # prediction.
    assert_raises(ValueError,
                  cross_val_multiscore,
                  clf,
                  X,
                  y,
                  cv=cv,
                  scoring='roc_auc')
    clf = SlidingEstimator(LogisticRegression(), scoring='roc_auc')
    scores_auc = cross_val_multiscore(clf, X, y, cv=cv, n_jobs=1)
    scores_auc_manual = list()
    for train, test in cv.split(X, y):
        clf.fit(X[train], y[train])
        scores_auc_manual.append(clf.score(X[test], y[test]))
    assert_array_equal(scores_auc, scores_auc_manual)
示例#4
0
def test_get_coef():
    """Test getting linear coefficients (filters/patterns) from estimators."""
    from sklearn.base import TransformerMixin, BaseEstimator
    from sklearn.pipeline import make_pipeline
    from sklearn.preprocessing import StandardScaler
    from sklearn.linear_model import Ridge, LinearRegression

    lm = LinearModel()
    assert (is_classifier(lm))

    lm = LinearModel(Ridge())
    assert (is_regressor(lm))

    # Define a classifier, an invertible transformer and an non-invertible one.

    class Clf(BaseEstimator):
        def fit(self, X, y):
            return self

    class NoInv(TransformerMixin):
        def fit(self, X, y):
            return self

        def transform(self, X):
            return X

    class Inv(NoInv):
        def inverse_transform(self, X):
            return X

    X, y, A = _make_data(n_samples=2000, n_features=3, n_targets=1)

    # I. Test inverse function

    # Check that we retrieve the right number of inverse functions even if
    # there are nested pipelines
    good_estimators = [
        (1, make_pipeline(Inv(), Clf())),
        (2, make_pipeline(Inv(), Inv(), Clf())),
        (3, make_pipeline(Inv(), make_pipeline(Inv(), Inv()), Clf())),
    ]

    for expected_n, est in good_estimators:
        est.fit(X, y)
        assert (expected_n == len(_get_inverse_funcs(est)))

    bad_estimators = [
        Clf(),  # no preprocessing
        Inv(),  # final estimator isn't classifier
        make_pipeline(NoInv(), Clf()),  # first step isn't invertible
        make_pipeline(Inv(), make_pipeline(Inv(), NoInv()),
                      Clf()),  # nested step isn't invertible
    ]
    for est in bad_estimators:
        est.fit(X, y)
        invs = _get_inverse_funcs(est)
        assert_equal(invs, list())

    # II. Test get coef for simple estimator and pipelines
    for clf in (lm, make_pipeline(StandardScaler(), lm)):
        clf.fit(X, y)
        # Retrieve final linear model
        filters = get_coef(clf, 'filters_', False)
        if hasattr(clf, 'steps'):
            coefs = clf.steps[-1][-1].model.coef_
        else:
            coefs = clf.model.coef_
        assert_array_equal(filters, coefs[0])
        patterns = get_coef(clf, 'patterns_', False)
        assert (filters[0] != patterns[0])
        n_chans = X.shape[1]
        assert_array_equal(filters.shape, patterns.shape, [n_chans, n_chans])

    # Inverse transform linear model
    filters_inv = get_coef(clf, 'filters_', True)
    assert (filters[0] != filters_inv[0])
    patterns_inv = get_coef(clf, 'patterns_', True)
    assert (patterns[0] != patterns_inv[0])

    # Check with search_light and combination of preprocessing ending with sl:
    slider = SlidingEstimator(make_pipeline(StandardScaler(), lm))
    X = np.transpose([X, -X], [1, 2, 0])  # invert X across 2 time samples
    clfs = (make_pipeline(Scaler(None, scalings='mean'), slider), slider)
    for clf in clfs:
        clf.fit(X, y)
        for inverse in (True, False):
            patterns = get_coef(clf, 'patterns_', inverse)
            filters = get_coef(clf, 'filters_', inverse)
            assert_array_equal(filters.shape, patterns.shape, X.shape[1:])
            # the two time samples get inverted patterns
            assert_equal(patterns[0, 0], -patterns[0, 1])
    for t in [0, 1]:
        assert_array_equal(get_coef(clf.estimators_[t], 'filters_', False),
                           filters[:, t])

    # Check patterns with more than 1 regressor
    for n_features in [1, 5]:
        for n_targets in [1, 3]:
            X, Y, A = _make_data(n_samples=5000, n_features=5, n_targets=3)
            lm = LinearModel(LinearRegression()).fit(X, Y)
            assert_array_equal(lm.filters_.shape, lm.patterns_.shape)
            assert_array_equal(lm.filters_.shape, [3, 5])
            assert_array_almost_equal(A, lm.patterns_.T, decimal=2)
            lm = LinearModel(Ridge(alpha=1)).fit(X, Y)
            assert_array_almost_equal(A, lm.patterns_.T, decimal=2)

    # Check can pass fitting parameters
    lm.fit(X, Y, sample_weight=np.ones(len(Y)))
示例#5
0
def test_cross_val_multiscore():
    """Test cross_val_multiscore for computing scores on decoding over time."""
    from sklearn.model_selection import KFold, StratifiedKFold, cross_val_score
    from sklearn.linear_model import LogisticRegression, LinearRegression

    if check_version('sklearn', '0.20'):
        logreg = LogisticRegression(solver='liblinear', random_state=0)
    else:
        logreg = LogisticRegression(random_state=0)

    # compare to cross-val-score
    X = np.random.rand(20, 3)
    y = np.arange(20) % 2
    cv = KFold(2, random_state=0, shuffle=True)
    clf = logreg
    assert_array_equal(cross_val_score(clf, X, y, cv=cv),
                       cross_val_multiscore(clf, X, y, cv=cv))

    # Test with search light
    X = np.random.rand(20, 4, 3)
    y = np.arange(20) % 2
    clf = SlidingEstimator(logreg, scoring='accuracy')
    scores_acc = cross_val_multiscore(clf, X, y, cv=cv)
    assert_array_equal(np.shape(scores_acc), [2, 3])

    # check values
    scores_acc_manual = list()
    for train, test in cv.split(X, y):
        clf.fit(X[train], y[train])
        scores_acc_manual.append(clf.score(X[test], y[test]))
    assert_array_equal(scores_acc, scores_acc_manual)

    # check scoring metric
    # raise an error if scoring is defined at cross-val-score level and
    # search light, because search light does not return a 1-dimensional
    # prediction.
    pytest.raises(ValueError,
                  cross_val_multiscore,
                  clf,
                  X,
                  y,
                  cv=cv,
                  scoring='roc_auc')
    clf = SlidingEstimator(logreg, scoring='roc_auc')
    scores_auc = cross_val_multiscore(clf, X, y, cv=cv, n_jobs=1)
    scores_auc_manual = list()
    for train, test in cv.split(X, y):
        clf.fit(X[train], y[train])
        scores_auc_manual.append(clf.score(X[test], y[test]))
    assert_array_equal(scores_auc, scores_auc_manual)

    # indirectly test that cross_val_multiscore rightly detects the type of
    # estimator and generates a StratifiedKFold for classiers and a KFold
    # otherwise
    X = np.random.randn(1000, 3)
    y = np.ones(1000, dtype=int)
    y[::2] = 0
    clf = logreg
    reg = LinearRegression()
    for cross_val in (cross_val_score, cross_val_multiscore):
        manual = cross_val(clf, X, y, cv=StratifiedKFold(2))
        auto = cross_val(clf, X, y, cv=2)
        assert_array_equal(manual, auto)

        manual = cross_val(reg, X, y, cv=KFold(2))
        auto = cross_val(reg, X, y, cv=2)
        assert_array_equal(manual, auto)
示例#6
0
def test_search_light():
    """Test SlidingEstimator."""
    from sklearn.linear_model import Ridge, LogisticRegression
    from sklearn.pipeline import make_pipeline
    from sklearn.metrics import roc_auc_score, make_scorer
    from sklearn.ensemble import BaggingClassifier
    from sklearn.base import is_classifier

    X, y = make_data()
    n_epochs, _, n_time = X.shape
    # init
    pytest.raises(ValueError, SlidingEstimator, 'foo')
    sl = SlidingEstimator(Ridge())
    assert (not is_classifier(sl))
    sl = SlidingEstimator(LogisticRegression())
    assert (is_classifier(sl))
    # fit
    assert_equal(sl.__repr__()[:18], '<SlidingEstimator(')
    sl.fit(X, y)
    assert_equal(sl.__repr__()[-28:], ', fitted with 10 estimators>')
    pytest.raises(ValueError, sl.fit, X[1:], y)
    pytest.raises(ValueError, sl.fit, X[:, :, 0], y)
    sl.fit(X, y, sample_weight=np.ones_like(y))

    # transforms
    pytest.raises(ValueError, sl.predict, X[:, :, :2])
    y_pred = sl.predict(X)
    assert (y_pred.dtype == int)
    assert_array_equal(y_pred.shape, [n_epochs, n_time])
    y_proba = sl.predict_proba(X)
    assert (y_proba.dtype == float)
    assert_array_equal(y_proba.shape, [n_epochs, n_time, 2])

    # score
    score = sl.score(X, y)
    assert_array_equal(score.shape, [n_time])
    assert (np.sum(np.abs(score)) != 0)
    assert (score.dtype == float)

    sl = SlidingEstimator(LogisticRegression())
    assert_equal(sl.scoring, None)

    # Scoring method
    for scoring in ['foo', 999]:
        sl = SlidingEstimator(LogisticRegression(), scoring=scoring)
        sl.fit(X, y)
        pytest.raises((ValueError, TypeError), sl.score, X, y)

    # Check sklearn's roc_auc fix: scikit-learn/scikit-learn#6874
    # -- 3 class problem
    sl = SlidingEstimator(LogisticRegression(random_state=0),
                          scoring='roc_auc')
    y = np.arange(len(X)) % 3
    sl.fit(X, y)
    pytest.raises(ValueError, sl.score, X, y)
    # -- 2 class problem not in [0, 1]
    y = np.arange(len(X)) % 2 + 1
    sl.fit(X, y)
    score = sl.score(X, y)
    assert_array_equal(score, [
        roc_auc_score(y - 1, _y_pred - 1)
        for _y_pred in sl.decision_function(X).T
    ])
    y = np.arange(len(X)) % 2

    # Cannot pass a metric as a scoring parameter
    sl1 = SlidingEstimator(LogisticRegression(), scoring=roc_auc_score)
    sl1.fit(X, y)
    pytest.raises(ValueError, sl1.score, X, y)

    # Now use string as scoring
    sl1 = SlidingEstimator(LogisticRegression(), scoring='roc_auc')
    sl1.fit(X, y)
    rng = np.random.RandomState(0)
    X = rng.randn(*X.shape)  # randomize X to avoid AUCs in [0, 1]
    score_sl = sl1.score(X, y)
    assert_array_equal(score_sl.shape, [n_time])
    assert (score_sl.dtype == float)

    # Check that scoring was applied adequately
    scoring = make_scorer(roc_auc_score, needs_threshold=True)
    score_manual = [
        scoring(est, x, y)
        for est, x in zip(sl1.estimators_, X.transpose(2, 0, 1))
    ]
    assert_array_equal(score_manual, score_sl)

    # n_jobs
    sl = SlidingEstimator(LogisticRegression(random_state=0),
                          n_jobs=1,
                          scoring='roc_auc')
    score_1job = sl.fit(X, y).score(X, y)
    sl.n_jobs = 2
    score_njobs = sl.fit(X, y).score(X, y)
    assert_array_equal(score_1job, score_njobs)
    sl.predict(X)

    # n_jobs > n_estimators
    sl.fit(X[..., [0]], y)
    sl.predict(X[..., [0]])

    # pipeline

    class _LogRegTransformer(LogisticRegression):
        # XXX needs transformer in pipeline to get first proba only
        def transform(self, X):
            return super(_LogRegTransformer, self).predict_proba(X)[..., 1]

    pipe = make_pipeline(SlidingEstimator(_LogRegTransformer()),
                         LogisticRegression())
    pipe.fit(X, y)
    pipe.predict(X)

    # n-dimensional feature space
    X = np.random.rand(10, 3, 4, 2)
    y = np.arange(10) % 2
    y_preds = list()
    for n_jobs in [1, 2]:
        pipe = SlidingEstimator(make_pipeline(Vectorizer(),
                                              LogisticRegression()),
                                n_jobs=n_jobs)
        y_preds.append(pipe.fit(X, y).predict(X))
        features_shape = pipe.estimators_[0].steps[0][1].features_shape_
        assert_array_equal(features_shape, [3, 4])
    assert_array_equal(y_preds[0], y_preds[1])

    # Bagging classifiers
    X = np.random.rand(10, 3, 4)
    for n_jobs in (1, 2):
        pipe = SlidingEstimator(BaggingClassifier(None, 2), n_jobs=n_jobs)
        pipe.fit(X, y)
        pipe.score(X, y)
        assert (isinstance(pipe.estimators_[0], BaggingClassifier))
示例#7
0
def test_get_coef():
    """Test getting linear coefficients (filters/patterns) from estimators."""
    from sklearn.base import TransformerMixin, BaseEstimator
    from sklearn.pipeline import make_pipeline
    from sklearn.preprocessing import StandardScaler
    from sklearn import svm
    from sklearn.linear_model import Ridge, LinearRegression
    from sklearn.model_selection import GridSearchCV

    lm_classification = LinearModel()
    assert (is_classifier(lm_classification))

    lm_regression = LinearModel(Ridge())
    assert (is_regressor(lm_regression))

    parameters = {'kernel': ['linear'], 'C': [1, 10]}
    lm_gs_classification = LinearModel(
        GridSearchCV(svm.SVC(),
                     parameters,
                     cv=2,
                     refit=True,
                     iid=False,
                     n_jobs=1))
    assert (is_classifier(lm_gs_classification))

    lm_gs_regression = LinearModel(
        GridSearchCV(svm.SVR(),
                     parameters,
                     cv=2,
                     refit=True,
                     iid=False,
                     n_jobs=1))
    assert (is_regressor(lm_gs_regression))

    # Define a classifier, an invertible transformer and an non-invertible one.

    class Clf(BaseEstimator):
        def fit(self, X, y):
            return self

    class NoInv(TransformerMixin):
        def fit(self, X, y):
            return self

        def transform(self, X):
            return X

    class Inv(NoInv):
        def inverse_transform(self, X):
            return X

    X, y, A = _make_data(n_samples=1000, n_features=3, n_targets=1)

    # I. Test inverse function

    # Check that we retrieve the right number of inverse functions even if
    # there are nested pipelines
    good_estimators = [
        (1, make_pipeline(Inv(), Clf())),
        (2, make_pipeline(Inv(), Inv(), Clf())),
        (3, make_pipeline(Inv(), make_pipeline(Inv(), Inv()), Clf())),
    ]

    for expected_n, est in good_estimators:
        est.fit(X, y)
        assert (expected_n == len(_get_inverse_funcs(est)))

    bad_estimators = [
        Clf(),  # no preprocessing
        Inv(),  # final estimator isn't classifier
        make_pipeline(NoInv(), Clf()),  # first step isn't invertible
        make_pipeline(Inv(), make_pipeline(Inv(), NoInv()),
                      Clf()),  # nested step isn't invertible
    ]
    for est in bad_estimators:
        est.fit(X, y)
        invs = _get_inverse_funcs(est)
        assert_equal(invs, list())

    # II. Test get coef for classification/regression estimators and pipelines
    rng = np.random.RandomState(0)
    for clf in (lm_regression, lm_gs_classification,
                make_pipeline(StandardScaler(), lm_classification),
                make_pipeline(StandardScaler(), lm_gs_regression)):

        # generate some categorical/continuous data
        # according to the type of estimator.
        if is_classifier(clf):
            n, n_features = 1000, 3
            X = rng.rand(n, n_features)
            y = np.arange(n) % 2
        else:
            X, y, A = _make_data(n_samples=1000, n_features=3, n_targets=1)
            y = np.ravel(y)

        clf.fit(X, y)

        # Retrieve final linear model
        filters = get_coef(clf, 'filters_', False)
        if hasattr(clf, 'steps'):
            if hasattr(clf.steps[-1][-1].model, 'best_estimator_'):
                # Linear Model with GridSearchCV
                coefs = clf.steps[-1][-1].model.best_estimator_.coef_
            else:
                # Standard Linear Model
                coefs = clf.steps[-1][-1].model.coef_
        else:
            if hasattr(clf.model, 'best_estimator_'):
                # Linear Model with GridSearchCV
                coefs = clf.model.best_estimator_.coef_
            else:
                # Standard Linear Model
                coefs = clf.model.coef_
        if coefs.ndim == 2 and coefs.shape[0] == 1:
            coefs = coefs[0]
        assert_array_equal(filters, coefs)
        patterns = get_coef(clf, 'patterns_', False)
        assert (filters[0] != patterns[0])
        n_chans = X.shape[1]
        assert_array_equal(filters.shape, patterns.shape, [n_chans, n_chans])

    # Inverse transform linear model
    filters_inv = get_coef(clf, 'filters_', True)
    assert (filters[0] != filters_inv[0])
    patterns_inv = get_coef(clf, 'patterns_', True)
    assert (patterns[0] != patterns_inv[0])

    # Check with search_light and combination of preprocessing ending with sl:
    slider = SlidingEstimator(make_pipeline(StandardScaler(), lm_regression))
    X = np.transpose([X, -X], [1, 2, 0])  # invert X across 2 time samples
    clfs = (make_pipeline(Scaler(None, scalings='mean'), slider), slider)
    for clf in clfs:
        clf.fit(X, y)
        for inverse in (True, False):
            patterns = get_coef(clf, 'patterns_', inverse)
            filters = get_coef(clf, 'filters_', inverse)
            assert_array_equal(filters.shape, patterns.shape, X.shape[1:])
            # the two time samples get inverted patterns
            assert_equal(patterns[0, 0], -patterns[0, 1])
    for t in [0, 1]:
        assert_array_equal(get_coef(clf.estimators_[t], 'filters_', False),
                           filters[:, t])

    # Check patterns with more than 1 regressor
    for n_features in [1, 5]:
        for n_targets in [1, 3]:
            X, Y, A = _make_data(n_samples=3000, n_features=5, n_targets=3)
            lm = LinearModel(LinearRegression()).fit(X, Y)
            assert_array_equal(lm.filters_.shape, lm.patterns_.shape)
            assert_array_equal(lm.filters_.shape, [3, 5])
            assert_array_almost_equal(A, lm.patterns_.T, decimal=2)
            lm = LinearModel(Ridge(alpha=1)).fit(X, Y)
            assert_array_almost_equal(A, lm.patterns_.T, decimal=2)

    # Check can pass fitting parameters
    lm.fit(X, Y, sample_weight=np.ones(len(Y)))
示例#8
0
def test_get_coef():
    """Test the retrieval of linear coefficients (filters and patterns) from
    simple and pipeline estimators.
    """
    from sklearn.base import TransformerMixin, BaseEstimator
    from sklearn.pipeline import make_pipeline
    from sklearn.preprocessing import StandardScaler
    from sklearn.linear_model import LinearRegression

    # Define a classifier, an invertible transformer and an non-invertible one.

    class Clf(BaseEstimator):
        def fit(self, X, y):
            return self

    class NoInv(TransformerMixin):
        def fit(self, X, y):
            return self

        def transform(self, X):
            return X

    class Inv(NoInv):
        def inverse_transform(self, X):
            return X

    np.random.RandomState(0)
    n_samples, n_features = 20, 3
    y = (np.arange(n_samples) % 2) * 2 - 1
    w = np.random.randn(n_features, 1)
    X = w.dot(y[np.newaxis, :]).T + np.random.randn(n_samples, n_features)

    # I. Test inverse function

    # Check that we retrieve the right number of inverse functions even if
    # there are nested pipelines
    good_estimators = [
        (1, make_pipeline(Inv(), Clf())),
        (2, make_pipeline(Inv(), Inv(), Clf())),
        (3, make_pipeline(Inv(), make_pipeline(Inv(), Inv()), Clf())),
    ]

    for expected_n, est in good_estimators:
        est.fit(X, y)
        assert_true(expected_n == len(_get_inverse_funcs(est)))

    bad_estimators = [
        Clf(),  # no preprocessing
        Inv(),  # final estimator isn't classifier
        make_pipeline(NoInv(), Clf()),  # first step isn't invertible
        make_pipeline(Inv(), make_pipeline(Inv(), NoInv()),
                      Clf()),  # nested step isn't invertible
    ]
    for est in bad_estimators:
        est.fit(X, y)
        invs = _get_inverse_funcs(est)
        assert_equal(invs, list())

    # II. Test get coef for simple estimator and pipelines
    for clf in (LinearModel(), make_pipeline(StandardScaler(), LinearModel())):
        clf.fit(X, y)
        # Retrieve final linear model
        filters = get_coef(clf, 'filters_', False)
        if hasattr(clf, 'steps'):
            coefs = clf.steps[-1][-1].model.coef_
        else:
            coefs = clf.model.coef_
        assert_array_equal(filters, coefs[0])
        patterns = get_coef(clf, 'patterns_', False)
        assert_true(filters[0] != patterns[0])
        n_chans = X.shape[1]
        assert_array_equal(filters.shape, patterns.shape, [n_chans, n_chans])

    # Inverse transform linear model
    filters_inv = get_coef(clf, 'filters_', True)
    assert_true(filters[0] != filters_inv[0])
    patterns_inv = get_coef(clf, 'patterns_', True)
    assert_true(patterns[0] != patterns_inv[0])

    # Check patterns values
    clf = make_pipeline(StandardScaler(), LinearModel(LinearRegression()))
    clf.fit(X, y)
    patterns = get_coef(clf, 'patterns_', True)
    mean, std = X.mean(0), X.std(0)
    X = (X - mean) / std
    coef = np.linalg.pinv(X.T.dot(X)).dot(X.T.dot(y))
    patterns_manual = np.cov(X.T).dot(coef)
    assert_array_almost_equal(patterns, patterns_manual * std + mean)

    # Check with search_light and combination of preprocessing ending with sl:
    n_samples, n_features, n_times = 20, 3, 5
    y = np.arange(n_samples) % 2
    X = np.random.rand(n_samples, n_features, n_times)
    slider = SlidingEstimator(make_pipeline(StandardScaler(), LinearModel()))

    clfs = (make_pipeline(Scaler(None, scalings='mean'), slider), slider)
    for clf in clfs:
        clf.fit(X, y)
        for inverse in (True, False):
            patterns = get_coef(clf, 'patterns_', inverse)
            filters = get_coef(clf, 'filters_', inverse)
            assert_array_equal(filters.shape, patterns.shape,
                               [n_features, n_times])
    for t in [0, 1]:
        assert_array_equal(get_coef(clf.estimators_[t], 'filters_', False),
                           filters[:, t])