示例#1
0
def test_evoked_baseline(tmp_path):
    """Test evoked baseline."""
    evoked = read_evokeds(fname, condition=0, baseline=None)

    # Here we create a data_set with constant data.
    evoked = EvokedArray(np.ones_like(evoked.data), evoked.info,
                         evoked.times[0])
    assert evoked.baseline is None

    evoked_baselined = EvokedArray(np.ones_like(evoked.data),
                                   evoked.info,
                                   evoked.times[0],
                                   baseline=(None, 0))
    assert_allclose(evoked_baselined.baseline, (evoked_baselined.tmin, 0))
    del evoked_baselined

    # Mean baseline correction is applied, since the data is equal to its mean
    # the resulting data should be a matrix of zeroes.
    baseline = (None, None)
    evoked.apply_baseline(baseline)
    assert_allclose(evoked.baseline, (evoked.tmin, evoked.tmax))
    assert_allclose(evoked.data, np.zeros_like(evoked.data))

    # Test that the .baseline attribute changes if we apply a different
    # baseline now.
    baseline = (None, 0)
    evoked.apply_baseline(baseline)
    assert_allclose(evoked.baseline, (evoked.tmin, 0))

    # By default for our test file, no baseline should be set upon reading
    evoked = read_evokeds(fname, condition=0)
    assert evoked.baseline is None

    # Test that the .baseline attribute is set when we call read_evokeds()
    # with a `baseline` parameter.
    baseline = (-0.2, -0.1)
    evoked = read_evokeds(fname, condition=0, baseline=baseline)
    assert_allclose(evoked.baseline, baseline)

    # Test that the .baseline attribute survives an I/O roundtrip.
    evoked = read_evokeds(fname, condition=0)
    baseline = (-0.2, -0.1)
    evoked.apply_baseline(baseline)
    assert_allclose(evoked.baseline, baseline)

    tmp_fname = tmp_path / 'test-ave.fif'
    evoked.save(tmp_fname)
    evoked_read = read_evokeds(tmp_fname, condition=0)
    assert_allclose(evoked_read.baseline, evoked.baseline)

    # We shouldn't be able to remove a baseline correction after it has been
    # applied.
    evoked = read_evokeds(fname, condition=0)
    baseline = (-0.2, -0.1)
    evoked.apply_baseline(baseline)
    with pytest.raises(ValueError, match='already been baseline-corrected'):
        evoked.apply_baseline(None)
示例#2
0
def test_evoked_baseline():
    """Test evoked baseline."""
    evoked = read_evokeds(fname, condition=0, baseline=None)

    # Here we create a data_set with constant data.
    evoked = EvokedArray(np.ones_like(evoked.data), evoked.info,
                         evoked.times[0])

    # Mean baseline correction is applied, since the data is equal to its mean
    # the resulting data should be a matrix of zeroes.
    evoked.apply_baseline((None, None))

    assert_allclose(evoked.data, np.zeros_like(evoked.data))
示例#3
0
def test_evoked_baseline():
    """Test evoked baseline."""
    evoked = read_evokeds(fname, condition=0, baseline=None)

    # Here we create a data_set with constant data.
    evoked = EvokedArray(np.ones_like(evoked.data), evoked.info,
                         evoked.times[0])

    # Mean baseline correction is applied, since the data is equal to its mean
    # the resulting data should be a matrix of zeroes.
    evoked.apply_baseline((None, None))

    assert_allclose(evoked.data, np.zeros_like(evoked.data))