示例#1
0
#
# We need a matching forward solution and inverse operator to compute
# resolution matrices for different methods.

data_path = sample.data_path()
subjects_dir = data_path + '/subjects'
fname_fwd = data_path + '/MEG/sample/sample_audvis-meg-eeg-oct-6-fwd.fif'
fname_inv = data_path + '/MEG/sample/sample_audvis-meg-oct-6-meg-fixed-inv.fif'
forward = mne.read_forward_solution(fname_fwd)
# Convert forward solution to fixed source orientations
mne.convert_forward_solution(
    forward, surf_ori=True, force_fixed=True, copy=False)
inverse_operator = read_inverse_operator(fname_inv)

# Compute resolution matrices for MNE
rm_mne = make_inverse_resolution_matrix(forward, inverse_operator,
                                        method='MNE', lambda2=1. / 3.**2)
src = inverse_operator['src']
del forward, inverse_operator  # save memory

# %%
# Read and organise labels for cortical parcellation
# --------------------------------------------------
#
# Get labels for FreeSurfer 'aparc' cortical parcellation with 34 labels/hemi
labels = mne.read_labels_from_annot('sample', parc='aparc',
                                    subjects_dir=subjects_dir)
n_labels = len(labels)
label_colors = [label.color for label in labels]
# First, we reorder the labels based on their location in the left hemi
label_names = [label.name for label in labels]
lh_labels = [name for name in label_names if name.endswith('lh')]
示例#2
0
# make inverse operator from forward solution
# free source orientation
inverse_operator = mne.minimum_norm.make_inverse_operator(info=evoked.info,
                                                          forward=forward,
                                                          noise_cov=noise_cov,
                                                          loose=0.,
                                                          depth=None)

# regularisation parameter
snr = 3.0
lambda2 = 1.0 / snr**2
method = 'MNE'  # can be 'MNE' or 'sLORETA'

# compute resolution matrix for sLORETA
rm_lor = make_inverse_resolution_matrix(forward,
                                        inverse_operator,
                                        method='sLORETA',
                                        lambda2=lambda2)

# get PSF and CTF for sLORETA at one vertex
sources = [1000]

stc_psf = get_point_spread(rm_lor, forward['src'], sources, norm=True)

stc_ctf = get_cross_talk(rm_lor, forward['src'], sources, norm=True)
del rm_lor

##############################################################################
# Visualize
# ---------
# PSF:
                                                          noise_cov=noise_cov,
                                                          loose=0.,
                                                          depth=None)

# regularisation parameter
snr = 3.0
lambda2 = 1.0 / snr**2

# %%
# MNE
# ---
# Compute resolution matrices, peak localisation error (PLE) for point spread
# functions (PSFs), spatial deviation (SD) for PSFs:

rm_mne = make_inverse_resolution_matrix(forward,
                                        inverse_operator,
                                        method='MNE',
                                        lambda2=lambda2)
ple_mne_psf = resolution_metrics(rm_mne,
                                 inverse_operator['src'],
                                 function='psf',
                                 metric='peak_err')
sd_mne_psf = resolution_metrics(rm_mne,
                                inverse_operator['src'],
                                function='psf',
                                metric='sd_ext')
del rm_mne

# %%
# dSPM
# ----
# Do the same for dSPM:
# Read forward solution
forward = mne.read_forward_solution(fname_fwd)
# Convert to fixed source orientations
forward = mne.convert_forward_solution(forward,
                                       surf_ori=True,
                                       force_fixed=True)

# Read inverse operator
inverse_operator = read_inverse_operator(fname_inv)

# Compute resolution matrices for MNE and sLORETA
lambda2 = 1. / 3.**2
method = 'MNE'
rm_mne = make_inverse_resolution_matrix(forward,
                                        inverse_operator,
                                        method=method,
                                        lambda2=lambda2)
method = 'sLORETA'
rm_lor = make_inverse_resolution_matrix(forward,
                                        inverse_operator,
                                        method=method,
                                        lambda2=lambda2)

###############################################################################
# Read and organise labels for cortical parcellation
# --------------------------------------------------
#
# Get labels for FreeSurfer 'aparc' cortical parcellation with 34 labels/hemi
labels = mne.read_labels_from_annot('sample',
                                    parc='aparc',
                                    subjects_dir=subjects_dir)
示例#5
0
                    meth_str = '%s_%s' % ('LCMV', cov_lat_str)

                    functions_and_metrics(resmat, fwd_use['src'], functions,
                                          metrics, subject, meth_str)

                    # Save some PSFs
                    filetext = meth_str + '_PSFs'
                    fname = fname_stc = C.fname_STC(C, C.resolution_subdir,
                                                    subject, filetext)

                    save_resolution_matrix(fname, resmat, invop['src'], gap=10)

            else:  # for MNE-type estimators

                # Compute resolution matrix
                resmat = make_inverse_resolution_matrix(fwd_use,
                                                        invop,
                                                        method=method,
                                                        lambda2=lambda2)

                functions_and_metrics(resmat, fwd_use['src'], functions,
                                      metrics, subject, meth_name)

                # Save some PSFs
                filetext = meth_name + '_PSFs'
                fname = fname_stc = C.fname_STC(C, C.resolution_subdir,
                                                subject, filetext)

                save_resolution_matrix(fname, resmat, invop['src'], gap=10)
示例#6
0
    raw_fname = data_path + meg + 'block_SD_tsss_raw.fif'
    info = mne.io.read_info(raw_fname)

    # make an inverse operator
    inv_op = make_inverse_operator(info, fwd, noise_cov=cov,
                                   fixed=True, loose=0., depth=None,
                                   verbose=None)

    # # Reading inverse operator (from one task)
    # inv_fname = data_path + meg + inv_op_name[0]
    # inv_op = read_inverse_operator(inv_fname)

    # Compute resolution matrix for MNE
    lambda2 = 1. / 3.**2
    method = 'MNE'
    rm = make_inverse_resolution_matrix(fwd, inv_op, method=method,
                                        lambda2=lambda2)

    # Source space used for inverse operator
    src = inv_op['src']

    # Compute first SVD component across PSFs within labels
    # Note the differences in explained variance, probably due to different
    # spatial extents of labels
    n_comp = 5
    stcs_psf, pca_vars = get_point_spread(
        rm, src, labels, mode='pca', n_comp=n_comp, norm=None,
        return_pca_vars=True)

 
    morph = mne.compute_source_morph( src=inv_op['src'], subject_from\
                    = stcs_psf[0].subject , subject_to = C.subject_to , spacing = \