示例#1
0
def test_dpss_windows():
    """Test computation of DPSS windows."""
    import nitime as ni
    N = 1000
    half_nbw = 4
    Kmax = int(2 * half_nbw)

    dpss, eigs = dpss_windows(N, half_nbw, Kmax, low_bias=False)
    with pytest.warns(None):  # conversions
        dpss_ni, eigs_ni = ni.algorithms.dpss_windows(N, half_nbw, Kmax)

    assert_array_almost_equal(dpss, dpss_ni)
    assert_array_almost_equal(eigs, eigs_ni)

    dpss, eigs = dpss_windows(N,
                              half_nbw,
                              Kmax,
                              interp_from=200,
                              low_bias=False)
    with pytest.warns(None):  # conversions
        dpss_ni, eigs_ni = ni.algorithms.dpss_windows(N,
                                                      half_nbw,
                                                      Kmax,
                                                      interp_from=200)

    assert_array_almost_equal(dpss, dpss_ni)
    assert_array_almost_equal(eigs, eigs_ni)
示例#2
0
def window_edges(sig, fs, dur=0.01, axis=-1, window='hann', edges='both'):
    """Window the edges of a signal (e.g., to prevent "pops")

    Parameters
    ----------
    sig : array-like
        The array to window.
    fs : float
        The sample rate.
    dur : float
        The duration to window on each edge. The default is 0.01 (10 ms).
    axis : int
        The axis to operate over.
    window : str
        The window to use. For a list of valid options, see
        ``scipy.signal.get_window()``, but can also be 'dpss'.
    edges : str
        Can be ``'leading'``, ``'trailing'``, or ``'both'`` (default).

    Returns
    -------
    windowed_sig : array-like
        The modified array (float64).
    """
    fs = float(fs)
    sig = np.array(sig, dtype=np.float64)  # this will make a copy
    sig_len = sig.shape[axis]
    win_len = int(dur * fs)
    if win_len > sig_len:
        raise RuntimeError('cannot create window of size {0} samples (dur={1})'
                           'for signal with length {2}'
                           ''.format(win_len, dur, sig_len))
    if window == 'dpss':
        from mne.time_frequency.multitaper import dpss_windows
        win = dpss_windows(2 * win_len + 1, 1, 1)[0][0][:win_len]
        win -= win[0]
        win /= win.max()
    else:
        win = signal.windows.get_window(window, 2 * win_len)[:win_len]
    valid_edges = ('leading', 'trailing', 'both')
    if edges not in valid_edges:
        raise ValueError('edges must be one of {0}, not "{1}"'
                         ''.format(valid_edges, edges))
    # now we can actually do the calculation
    flattop = np.ones(sig_len, dtype=np.float64)
    if edges in ('trailing', 'both'):  # eliminate trailing
        flattop[-win_len:] *= win[::-1]
    if edges in ('leading', 'both'):  # eliminate leading
        flattop[:win_len] *= win
    shape = np.ones_like(sig.shape)
    shape[axis] = sig.shape[axis]
    flattop.shape = shape
    sig *= flattop
    return sig
示例#3
0
def window_edges(sig, fs, dur=0.01, axis=-1, window='hann', edges='both'):
    """Window the edges of a signal (e.g., to prevent "pops")

    Parameters
    ----------
    sig : array-like
        The array to window.
    fs : float
        The sample rate.
    dur : float
        The duration to window on each edge. The default is 0.01 (10 ms).
    axis : int
        The axis to operate over.
    window : str
        The window to use. For a list of valid options, see
        ``scipy.signal.get_window()``, but can also be 'dpss'.
    edges : str
        Can be ``'leading'``, ``'trailing'``, or ``'both'`` (default).

    Returns
    -------
    windowed_sig : array-like
        The modified array (float64).
    """
    fs = float(fs)
    sig = np.array(sig, dtype=np.float64)  # this will make a copy
    sig_len = sig.shape[axis]
    win_len = int(dur * fs)
    if win_len > sig_len:
        raise RuntimeError('cannot create window of size {0} samples (dur={1})'
                           'for signal with length {2}'
                           ''.format(win_len, dur, sig_len))
    if window == 'dpss':
        from mne.time_frequency.multitaper import dpss_windows
        win = dpss_windows(2 * win_len + 1, 1, 1)[0][0][:win_len]
        win -= win[0]
        win /= win.max()
    else:
        win = signal.windows.get_window(window, 2 * win_len)[:win_len]
    valid_edges = ('leading', 'trailing', 'both')
    if edges not in valid_edges:
        raise ValueError('edges must be one of {0}, not "{1}"'
                         ''.format(valid_edges, edges))
    # now we can actually do the calculation
    flattop = np.ones(sig_len, dtype=np.float64)
    if edges in ('trailing', 'both'):  # eliminate trailing
        flattop[-win_len:] *= win[::-1]
    if edges in ('leading', 'both'):  # eliminate leading
        flattop[:win_len] *= win
    shape = np.ones_like(sig.shape)
    shape[axis] = sig.shape[axis]
    flattop.shape = shape
    sig *= flattop
    return sig
示例#4
0
def test_dpss_windows():
    """Test computation of DPSS windows."""

    import nitime as ni
    N = 1000
    half_nbw = 4
    Kmax = int(2 * half_nbw)

    dpss, eigs = dpss_windows(N, half_nbw, Kmax, low_bias=False)
    dpss_ni, eigs_ni = ni.algorithms.dpss_windows(N, half_nbw, Kmax)

    assert_array_almost_equal(dpss, dpss_ni)
    assert_array_almost_equal(eigs, eigs_ni)

    dpss, eigs = dpss_windows(N, half_nbw, Kmax, interp_from=200,
                              low_bias=False)
    dpss_ni, eigs_ni = ni.algorithms.dpss_windows(N, half_nbw, Kmax,
                                                  interp_from=200)

    assert_array_almost_equal(dpss, dpss_ni)
    assert_array_almost_equal(eigs, eigs_ni)
示例#5
0
def texture_ERB(n_freqs=20,
                n_coh=None,
                rho=1.,
                seq=('inc', 'nb', 'inc', 'nb'),
                fs=24414.0625,
                dur=1.,
                SAM_freq=7.,
                random_state=None,
                freq_lims=(200, 8000),
                verbose=True):
    """Create ERB texture stimulus

    Parameters
    ----------
    n_freqs : int
        Number of tones in mixture (default 20).
    n_coh : int | None
        Number of tones to be temporally coherent. Default (None) is
        ``int(np.round(n_freqs * 0.8))``.
    rho : float
        Correlation between the envelopes of grouped tones (default is 1.0).
    seq : list
        Sequence of incoherent ('inc'), coherent noise envelope ('nb'), and
        SAM ('sam') mixtures. Default is ``('inc', 'nb', 'inc', 'nb')``.
    fs : float
        Sampling rate in Hz.
    dur : float
        Duration (in seconds) of each token in seq (default is 1.0).
    SAM_freq : float
        The SAM frequency to use.
    random_state : None | int | np.random.RandomState
        The random generator state used for band selection and noise
        envelope generation.
    freq_lims : tuple
        The lower and upper frequency limits (default is (200, 8000)).
    verbose : bool
        If True, print the resulting ERB spacing.

    Returns
    -------
    x : ndarray, shape (n_samples,)
        The stimulus, where ``n_samples = len(seq) * (fs * dur)``
        (approximately).

    Notes
    -----
    This function requires MNE.
    """
    from mne.time_frequency.multitaper import dpss_windows
    from mne.utils import check_random_state
    if not isinstance(seq, (list, tuple, np.ndarray)):
        raise TypeError('seq must be list, tuple, or ndarray, got %s' %
                        type(seq))
    known_seqs = ('inc', 'nb', 'sam')
    for si, s in enumerate(seq):
        if s not in known_seqs:
            raise ValueError('all entries in seq must be one of %s, got '
                             'seq[%s]=%s' % (known_seqs, si, s))
    fs = float(fs)
    rng = check_random_state(random_state)
    n_coh = int(np.round(n_freqs * 0.8)) if n_coh is None else n_coh
    rise = 0.002
    t = np.arange(int(round(dur * fs))) / fs

    f_min, f_max = freq_lims
    n_ERBs = _cams(f_max) - _cams(f_min)
    del f_max
    spacing_ERBs = n_ERBs / float(n_freqs - 1)
    if verbose:
        print('This stim will have successive tones separated by %2.2f ERBs' %
              spacing_ERBs)
    if spacing_ERBs < 1.0:
        warnings.warn('The spacing between tones is LESS THAN 1 ERB!')

    # Make a filter whose impulse response is purely positive (to avoid phase
    # jumps) so that the filtered envelope is purely positive. Use a DPSS
    # window to minimize sidebands. For a bandwidth of bw, to get the shortest
    # filterlength, we need to restrict time-bandwidth product to a minimum.
    # Thus we need a length*bw = 2 => length = 2/bw (second). Hence filter
    # coefficients are calculated as follows:
    b = dpss_windows(int(np.floor(2 * fs / 100.)), 1., 1)[0][0]
    b -= b[0]
    b /= b.sum()

    # Incoherent
    envrate = 14
    bw = 20
    incoh = 0.
    for k in range(n_freqs):
        f = _inv_cams(_cams(f_min) + spacing_ERBs * k)
        env = _make_narrow_noise(bw, envrate, dur, fs, rise, rng)
        env[env < 0] = 0
        env = np.convolve(b, env)[:len(t)]
        incoh += _scale_sound(
            window_edges(env * np.sin(2 * np.pi * f * t),
                         fs,
                         rise,
                         window='dpss'))
    incoh /= rms(incoh)

    # Coherent (noise band)
    stims = dict(inc=0., nb=0., sam=0.)
    group = np.sort(rng.permutation(np.arange(n_freqs))[:n_coh])
    for kind in known_seqs:
        if kind == 'nb':  # noise band
            env_coh = _make_narrow_noise(bw, envrate, dur, fs, rise, rng)
        else:  # 'nb' or 'inc'
            env_coh = 0.5 + np.sin(2 * np.pi * SAM_freq * t) / 2.
            env_coh = window_edges(env_coh, fs, rise, window='dpss')
        env_coh[env_coh < 0] = 0
        env_coh = np.convolve(b, env_coh)[:len(t)]
        if kind == 'inc':
            use_group = []  # no coherent ones
        else:  # 'nb' or 'sam'
            use_group = group
        for k in range(n_freqs):
            f = _inv_cams(_cams(f_min) + spacing_ERBs * k)
            env_inc = _make_narrow_noise(bw, envrate, dur, fs, rise, rng)
            env_inc[env_inc < 0] = 0.
            env_inc = np.convolve(b, env_inc)[:len(t)]
            if k in use_group:
                env = np.sqrt(rho) * env_coh + np.sqrt(1 - rho**2) * env_inc
            else:
                env = env_inc
            stims[kind] += _scale_sound(
                window_edges(env * np.sin(2 * np.pi * f * t),
                             fs,
                             rise,
                             window='dpss'))
        stims[kind] /= rms(stims[kind])
    stim = np.concatenate([stims[s] for s in seq])
    stim = 0.01 * stim / rms(stim)
    return stim
示例#6
0
文件: _texture.py 项目: LABSN/expyfun
def texture_ERB(n_freqs=20, n_coh=None, rho=1., seq=('inc', 'nb', 'inc', 'nb'),
                fs=24414.0625, dur=1., SAM_freq=7., random_state=None,
                freq_lims=(200, 8000), verbose=True):
    """Create ERB texture stimulus

    Parameters
    ----------
    n_freqs : int
        Number of tones in mixture (default 20).
    n_coh : int | None
        Number of tones to be temporally coherent. Default (None) is
        ``int(np.round(n_freqs * 0.8))``.
    rho : float
        Correlation between the envelopes of grouped tones (default is 1.0).
    seq : list
        Sequence of incoherent ('inc'), coherent noise envelope ('nb'), and
        SAM ('sam') mixtures. Default is ``('inc', 'nb', 'inc', 'nb')``.
    fs : float
        Sampling rate in Hz.
    dur : float
        Duration (in seconds) of each token in seq (default is 1.0).
    SAM_freq : float
        The SAM frequency to use.
    random_state : None | int | np.random.RandomState
        The random generator state used for band selection and noise
        envelope generation.
    freq_lims : tuple
        The lower and upper frequency limits (default is (200, 8000)).
    verbose : bool
        If True, print the resulting ERB spacing.

    Returns
    -------
    x : ndarray, shape (n_samples,)
        The stimulus, where ``n_samples = len(seq) * (fs * dur)``
        (approximately).

    Notes
    -----
    This function requires MNE.
    """
    from mne.time_frequency.multitaper import dpss_windows
    from mne.utils import check_random_state
    if not isinstance(seq, (list, tuple, np.ndarray)):
        raise TypeError('seq must be list, tuple, or ndarray, got %s'
                        % type(seq))
    known_seqs = ('inc', 'nb', 'sam')
    for si, s in enumerate(seq):
        if s not in known_seqs:
            raise ValueError('all entries in seq must be one of %s, got '
                             'seq[%s]=%s' % (known_seqs, si, s))
    fs = float(fs)
    rng = check_random_state(random_state)
    n_coh = int(np.round(n_freqs * 0.8)) if n_coh is None else n_coh
    rise = 0.002
    t = np.arange(int(round(dur * fs))) / fs

    f_min, f_max = freq_lims
    n_ERBs = _cams(f_max) - _cams(f_min)
    del f_max
    spacing_ERBs = n_ERBs / float(n_freqs - 1)
    if verbose:
        print('This stim will have successive tones separated by %2.2f ERBs'
              % spacing_ERBs)
    if spacing_ERBs < 1.0:
        warnings.warn('The spacing between tones is LESS THAN 1 ERB!')

    # Make a filter whose impulse response is purely positive (to avoid phase
    # jumps) so that the filtered envelope is purely positive. Use a DPSS
    # window to minimize sidebands. For a bandwidth of bw, to get the shortest
    # filterlength, we need to restrict time-bandwidth product to a minimum.
    # Thus we need a length*bw = 2 => length = 2/bw (second). Hence filter
    # coefficients are calculated as follows:
    b = dpss_windows(int(np.floor(2 * fs / 100.)), 1., 1)[0][0]
    b -= b[0]
    b /= b.sum()

    # Incoherent
    envrate = 14
    bw = 20
    incoh = 0.
    for k in range(n_freqs):
        f = _inv_cams(_cams(f_min) + spacing_ERBs * k)
        env = _make_narrow_noise(bw, envrate, dur, fs, rise, rng)
        env[env < 0] = 0
        env = np.convolve(b, env)[:len(t)]
        incoh += _scale_sound(window_edges(
            env * np.sin(2 * np.pi * f * t), fs, rise, window='dpss'))
    incoh /= rms(incoh)

    # Coherent (noise band)
    stims = dict(inc=0., nb=0., sam=0.)
    group = np.sort(rng.permutation(np.arange(n_freqs))[:n_coh])
    for kind in known_seqs:
        if kind == 'nb':  # noise band
            env_coh = _make_narrow_noise(bw, envrate, dur, fs, rise, rng)
        else:  # 'nb' or 'inc'
            env_coh = 0.5 + np.sin(2 * np.pi * SAM_freq * t) / 2.
            env_coh = window_edges(env_coh, fs, rise, window='dpss')
        env_coh[env_coh < 0] = 0
        env_coh = np.convolve(b, env_coh)[:len(t)]
        if kind == 'inc':
            use_group = []  # no coherent ones
        else:  # 'nb' or 'sam'
            use_group = group
        for k in range(n_freqs):
            f = _inv_cams(_cams(f_min) + spacing_ERBs * k)
            env_inc = _make_narrow_noise(bw, envrate, dur, fs, rise, rng)
            env_inc[env_inc < 0] = 0.
            env_inc = np.convolve(b, env_inc)[:len(t)]
            if k in use_group:
                env = np.sqrt(rho) * env_coh + np.sqrt(1 - rho ** 2) * env_inc
            else:
                env = env_inc
            stims[kind] += _scale_sound(window_edges(
                env * np.sin(2 * np.pi * f * t), fs, rise, window='dpss'))
        stims[kind] /= rms(stims[kind])
    stim = np.concatenate([stims[s] for s in seq])
    stim = 0.01 * stim / rms(stim)
    return stim