def test_plot_topo(): """Test plotting of ERP topography """ # Show topography evoked = _get_epochs().average() plot_topo(evoked, layout) warnings.simplefilter('always', UserWarning) picked_evoked = pick_channels_evoked(evoked, evoked.ch_names[:3]) # test scaling with warnings.catch_warnings(record=True): for ylim in [dict(mag=[-600, 600]), None]: plot_topo([picked_evoked] * 2, layout, ylim=ylim) for evo in [evoked, [evoked, picked_evoked]]: assert_raises(ValueError, plot_topo, evo, layout, color=['y', 'b']) evoked_delayed_ssp = _get_epochs_delayed_ssp().average() ch_names = evoked_delayed_ssp.ch_names[:3] # make it faster picked_evoked_delayed_ssp = pick_channels_evoked(evoked_delayed_ssp, ch_names) fig = plot_topo(picked_evoked_delayed_ssp, layout, proj='interactive') func = _get_presser(fig) event = namedtuple('Event', 'inaxes') func(event(inaxes=fig.axes[0]))
def test_plot_topo(): """Test plotting of ERP topography """ # Show topography evoked = _get_epochs().average() plot_topo(evoked, layout) warnings.simplefilter('always', UserWarning) picked_evoked = pick_channels_evoked(evoked, evoked.ch_names[:3]) # test scaling with warnings.catch_warnings(record=True): for ylim in [dict(mag=[-600, 600]), None]: plot_topo([picked_evoked] * 2, layout, ylim=ylim) for evo in [evoked, [evoked, picked_evoked]]: assert_raises(ValueError, plot_topo, evo, layout, color=['y', 'b']) evoked_delayed_ssp = _get_epochs_delayed_ssp().average() ch_names = evoked_delayed_ssp.ch_names[:3] # make it faster picked_evoked_delayed_ssp = pick_channels_evoked( evoked_delayed_ssp, ch_names) fig = plot_topo(picked_evoked_delayed_ssp, layout, proj='interactive') func = _get_presser(fig) event = namedtuple('Event', 'inaxes') func(event(inaxes=fig.axes[0]))
def test_plot_topo(): """Plot ERP topography """ layout = Layout('Vectorview-all') # Show topography plot_topo(evoked, layout)
def test_plot_topo(): """Test plotting of ERP topography """ layout = read_layout('Vectorview-all') # Show topography plot_topo(evoked, layout)
def test_plot_topo(): """Test plotting of ERP topography """ import matplotlib.pyplot as plt # Show topography evoked = _get_epochs().average() plot_evoked_topo(evoked) # should auto-find layout warnings.simplefilter('always', UserWarning) picked_evoked = evoked.pick_channels(evoked.ch_names[:3], copy=True) picked_evoked_eeg = evoked.pick_types(meg=False, eeg=True, copy=True) picked_evoked_eeg.pick_channels(picked_evoked_eeg.ch_names[:3]) # test scaling with warnings.catch_warnings(record=True): for ylim in [dict(mag=[-600, 600]), None]: plot_topo([picked_evoked] * 2, layout, ylim=ylim) for evo in [evoked, [evoked, picked_evoked]]: assert_raises(ValueError, plot_topo, evo, layout, color=['y', 'b']) evoked_delayed_ssp = _get_epochs_delayed_ssp().average() ch_names = evoked_delayed_ssp.ch_names[:3] # make it faster picked_evoked_delayed_ssp = pick_channels_evoked(evoked_delayed_ssp, ch_names) fig = plot_topo(picked_evoked_delayed_ssp, layout, proj='interactive') func = _get_presser(fig) event = namedtuple('Event', 'inaxes') func(event(inaxes=fig.axes[0])) params = dict(evokeds=[picked_evoked_delayed_ssp], times=picked_evoked_delayed_ssp.times, fig=fig, projs=picked_evoked_delayed_ssp.info['projs']) bools = [True] * len(params['projs']) _plot_update_evoked_topo(params, bools) # should auto-generate layout plot_evoked_topo(picked_evoked_eeg.copy(), fig_background=np.zeros((4, 3, 3)), proj=True) plt.close('all')
def test_plot_topo(): """Test plotting of ERP topography """ # Show topography plot_topo(evoked, layout) picked_evoked = pick_channels_evoked(evoked, evoked.ch_names[:3]) # test scaling for ylim in [dict(mag=[-600, 600]), None]: plot_topo([picked_evoked] * 2, layout, ylim=ylim) for evo in [evoked, [evoked, picked_evoked]]: assert_raises(ValueError, plot_topo, evo, layout, color=['y', 'b']) plot_topo(evoked_delayed_ssp, layout, proj='interactive')
def test_plot_topo(): """Test plotting of ERP topography """ # Show topography evoked = _get_epochs().average() plot_topo(evoked, layout) picked_evoked = pick_channels_evoked(evoked, evoked.ch_names[:3]) # test scaling for ylim in [dict(mag=[-600, 600]), None]: plot_topo([picked_evoked] * 2, layout, ylim=ylim) for evo in [evoked, [evoked, picked_evoked]]: assert_raises(ValueError, plot_topo, evo, layout, color=['y', 'b']) evoked_delayed_ssp = _get_epochs_delayed_ssp().average() plot_topo(evoked_delayed_ssp, layout, proj='interactive')
def test_plot_topo(): """Test plotting of ERP topography """ # Show topography evoked = _get_epochs().average() plot_topo(evoked, layout) warnings.simplefilter("always", UserWarning) picked_evoked = pick_channels_evoked(evoked, evoked.ch_names[:3]) # test scaling with warnings.catch_warnings(record=True): for ylim in [dict(mag=[-600, 600]), None]: plot_topo([picked_evoked] * 2, layout, ylim=ylim) for evo in [evoked, [evoked, picked_evoked]]: assert_raises(ValueError, plot_topo, evo, layout, color=["y", "b"]) evoked_delayed_ssp = _get_epochs_delayed_ssp().average() ch_names = evoked_delayed_ssp.ch_names[:3] # make it faster picked_evoked_delayed_ssp = pick_channels_evoked(evoked_delayed_ssp, ch_names) plot_topo(picked_evoked_delayed_ssp, layout, proj="interactive")
""" ================================= Plot topographies for MEG sensors ================================= """ # Author: Alexandre Gramfort <*****@*****.**> # # License: BSD (3-clause) print __doc__ import pylab as pl from mne import fiff from mne.viz import plot_topo from mne.datasets import sample data_path = sample.data_path() fname = data_path + '/MEG/sample/sample_audvis-ave.fif' # Reading evoked = fiff.read_evoked(fname, setno=0, baseline=(None, 0)) ############################################################################### # Show topography title = 'MNE sample data (condition : %s)' % evoked.comment plot_topo(evoked, title=title) pl.show()
================================= Plot topographies for MEG sensors ================================= """ # Author: Alexandre Gramfort <*****@*****.**> # # License: BSD (3-clause) import matplotlib.pyplot as plt from mne import read_evokeds from mne.viz import plot_topo from mne.datasets import sample print(__doc__) data_path = sample.data_path() fname = data_path + '/MEG/sample/sample_audvis-ave.fif' # Reading condition = 'Left Auditory' evoked = read_evokeds(fname, condition=condition, baseline=(None, 0)) ############################################################################### # Show topography title = 'MNE sample data (condition : %s)' % evoked.comment plot_topo(evoked, title=title) plt.show()
# Syntax is `epochs[condition]` # In[40]: epochs_data = epochs['aud_l'].get_data() print(epochs_data.shape) # epochs_data is a 3D array of dimension (55 epochs, 365 channels, 106 time instants). # In[41]: evokeds = [epochs[k].average() for k in event_id] from mne.viz import plot_topo layout = mne.find_layout(epochs.info) plot_topo(evokeds, layout=layout, color=['blue', 'orange']); # ## Compute noise covariance # In[42]: noise_cov = mne.compute_covariance(epochs, tmax=0.) print(noise_cov.data.shape) # In[43]: fig = mne.viz.plot_cov(noise_cov, raw.info)
raw = Raw(raw_fname) events = mne.read_events(event_fname) # Set up pick list: MEG + STI 014 - bad channels (modify to your needs) include = [] # or stim channels ['STI 014'] # bad channels in raw.info['bads'] will be automatically excluded # Set up amplitude-peak rejection values for MEG channels reject = dict(grad=4000e-13, mag=4e-12) # pick MEG channels picks = pick_types(raw.info, meg=True, eeg=False, stim=False, eog=True, include=include, exclude='bads') # Create epochs including different events epochs = mne.Epochs(raw, events, dict(audio_l=1, visual_r=3), tmin, tmax, picks=picks, baseline=(None, 0), reject=reject) # Generate list of evoked objects from conditions names evokeds = [epochs[name].average() for name in 'audio_l', 'visual_r'] ############################################################################### # Show topography for two different conditions layout = read_layout('Vectorview-all.lout') pl.close('all') title = 'MNE sample data - left auditory and visual' plot_topo(evokeds, layout, color=['y', 'g'], title=title) pl.show()
def test_plot_topo(): """Test plotting of ERP topography """ # Show topography plot_topo(evoked, layout)
eog=True, include=include, exclude='bads') # Create epochs including different events epochs = mne.Epochs(raw, events, dict(audio_l=1, visual_r=3), tmin, tmax, picks=picks, baseline=(None, 0), reject=reject) # Generate list of evoked objects from conditions names evokeds = [epochs[name].average() for name in ('audio_l', 'visual_r')] ############################################################################### # Show topography for two different conditions colors = 'yellow', 'green' title = 'MNE sample data - left auditory and visual' plot_topo(evokeds, color=colors, title=title) conditions = [e.comment for e in evokeds] for cond, col, pos in zip(conditions, colors, (0.025, 0.07)): plt.figtext(0.775, pos, cond, color=col, fontsize=12) plt.show()
def SensorStatsPlot(condcomb, ListSubj, colors): #ListSubj = ('sd130343','cb130477' , 'rb130313', 'jm100109', # 'sb120316', 'tk130502','lm130479' , 'ms130534', 'ma100253', 'sl130503', # 'mb140004','mp140019' , 'dm130250', 'hr130504', 'wl130316', 'rl130571') #ListSubj = ('sd130343','cb130477' , 'rb130313', 'jm100109', # 'tk130502','lm130479' , 'ms130534', 'ma100253', 'sl130503', # 'mb140004','mp140019' , 'dm130250', 'hr130504', 'rl130571') #condcomb = ('QtPast' ,'QtPre','QtFut' ) #condcomb = ('QsWest' ,'QsPar','QsEast') #ipython --pylab import mne import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from mne.viz import plot_topomap from mne.stats import spatio_temporal_cluster_test from mne.datasets import sample from mne.channels import read_ch_connectivity from scipy import stats as stats from mne.viz import plot_topo import os os.chdir('/neurospin/meg/meg_tmp/MTT_MEG_Baptiste/SCRIPTS/MNE_PYTHON') os.environ['MNE_ROOT'] = '/neurospin/local/mne' wdir = "/neurospin/meg/meg_tmp/MTT_MEG_Baptiste/MEG/" # load FieldTrip neighbor definition to setup sensor connectivity neighbor_file_mag = '/neurospin/local/fieldtrip/template/neighbours/neuromag306mag_neighb.mat' # mag neighbor_file_grad = '/neurospin/local/fieldtrip/template/neighbours/neuromag306planar_neighb.mat' # grad neighbor_file_eeg = '/neurospin/local/fieldtrip/template/neighbours/easycap64ch-avg_neighb.mat' # eeg connectivity, ch_names = mne.channels.read_ch_connectivity( neighbor_file_eeg, picks=range(60)) connectivity_mag, ch_names_mag = read_ch_connectivity(neighbor_file_mag) connectivity_grad, ch_names_grad = read_ch_connectivity(neighbor_file_grad) connectivity_eeg, ch_names_eeg = read_ch_connectivity(neighbor_file_eeg) # evoked 0 to get the size of the matrix fname0 = (wdir + ListSubj[0] + "/mne_python/MEEG_" + condcomb[0] + "_" + ListSubj[0] + "-ave.fif") evoked0 = mne.read_evokeds(fname0, condition=0, baseline=(-0.2, 0)) sensordatamat_meg_mag = np.empty( [len(condcomb), len(ListSubj), 102, evoked0.data.shape[1]]) sensordatamat_meg_grad = np.empty( [len(condcomb), len(ListSubj), 204, evoked0.data.shape[1]]) sensordatamat_meg_eeg = np.empty( [len(condcomb), len(ListSubj), 60, evoked0.data.shape[1]]) # define statistical threshold p_threshold = 0.05 t_threshold = -stats.distributions.t.ppf(p_threshold / 2., len(ListSubj) - 1) # compute grand averages GDAVGmag, GDAVGgrad, GDAVGeeg = [], [], [] sensordatamat_meg_mag = np.empty( (len(condcomb), len(ListSubj), 102, len(evoked0.times))) sensordatamat_meg_grad = np.empty( (len(condcomb), len(ListSubj), 204, len(evoked0.times))) #sensordatamat_eeg = np.empty((len(condcomb),len(ListSubj),60 ,len(evoked0.times))) for c in range(len(condcomb)): evoked2plotmag, evoked2plotgrad, evoked2ploteeg = [], [], [] for i in range(len(ListSubj)): fname_ave_meg = (wdir + ListSubj[i] + "/mne_python/MEEG_" + condcomb[c] + "_" + ListSubj[i] + "-ave.fif") tmp_evoked_meg = mne.read_evokeds(fname_ave_meg, condition=0, baseline=(-0.2, 0)) evoked2plotmag.append(tmp_evoked_meg.pick_types('mag')) sensordatamat_meg_mag[c, i, ::, ::] = tmp_evoked_meg.data tmp_evoked_meg = mne.read_evokeds(fname_ave_meg, condition=0, baseline=(-0.2, 0)) evoked2plotgrad.append(tmp_evoked_meg.pick_types('grad')) sensordatamat_meg_grad[c, i, ::, ::] = tmp_evoked_meg.data #tmp_evoked_meg = mne.read_evokeds(fname_ave_meg, condition=0, baseline=(-0.2, 0)) #evoked2ploteeg.append(tmp_evoked_meg.pick_types('eeg')) #sensordatamat_eeg[c,i,::,::] = tmp_evoked_meg.data GDAVGmag.append(mne.grand_average(evoked2plotmag)) GDAVGgrad.append(mne.grand_average(evoked2plotgrad)) #GDAVGeeg.append(mne.grand_average(evoked2ploteeg)) # plot topomaps of grand_averages plot_topo(GDAVGmag, color=colors) plt.savefig( "/neurospin/meg/meg_tmp/MTT_MEG_Baptiste/MEG/GROUP/decoding_context_yousra/" + "_".join([str(cond) for cond in condcomb]) + "_GDAVG_mags") plot_topo(GDAVGgrad, color=colors) plt.savefig( "/neurospin/meg/meg_tmp/MTT_MEG_Baptiste/MEG/GROUP/decoding_context_yousra/" + "_".join([str(cond) for cond in condcomb]) + "_GDAVG_grads") times = np.arange(-0.1, 0.9, 0.05) for c in range(len(condcomb)): GDAVGmag[c].plot_topomap(times, ch_type='mag', vmin=-40, vmax=40, average=0.05) plt.savefig( "/neurospin/meg/meg_tmp/MTT_MEG_Baptiste/MEG/GROUP/decoding_context_yousra/" + str(condcomb[c]) + "_GDAVG_mags") GDAVGgrad[c].plot_topomap(times, ch_type='grad', vmin=-10, vmax=10, average=0.05) plt.savefig( "/neurospin/meg/meg_tmp/MTT_MEG_Baptiste/MEG/GROUP/decoding_context_yousra/" + str(condcomb[c]) + "_GDAVG_grads") allcond_meg_mag = [ np.transpose(x, (0, 2, 1)) for x in sensordatamat_meg_mag ] allcond_meg_grad = [ np.transpose(x, (0, 2, 1)) for x in sensordatamat_meg_grad ] ############################################################################### t_threshold = -stats.distributions.t.ppf(0 / 2, len(ListSubj) - 1) T_obs, clusters, cluster_p_values, HO = spatio_temporal_cluster_test( allcond_meg_mag[0::1], n_permutations=1024, threshold=t_threshold, tail=0, n_jobs=4, connectivity=connectivity_mag) t_threshold = -stats.distributions.t.ppf(0 / 2, len(ListSubj) - 1) T_obs, clusters, cluster_p_values, HO = spatio_temporal_cluster_test( allcond_meg_grad, n_permutations=1024, threshold=t_threshold, tail=0, n_jobs=4, connectivity=connectivity_grad)
picks = pick_types(raw.info, meg=True, eeg=False, stim=False, eog=True, include=include, exclude='bads') # Create epochs including different events epochs = mne.Epochs(raw, events, dict(audio_l=1, visual_r=3), tmin, tmax, picks=picks, baseline=(None, 0), reject=reject) # Generate list of evoked objects from conditions names evokeds = [epochs[name].average() for name in 'audio_l', 'visual_r'] ############################################################################### # Show topography for two different conditions layout = read_layout('Vectorview-all.lout') pl.close('all') title = 'MNE sample data - left auditory and visual' plot_topo(evokeds, layout, color=['y', 'g'], title=title) pl.show()
================================= """ # Author: Alexandre Gramfort <*****@*****.**> # # License: BSD (3-clause) print __doc__ import pylab as pl from mne import fiff from mne.layouts import read_layout from mne.viz import plot_topo from mne.datasets import sample data_path = sample.data_path() fname = data_path + '/MEG/sample/sample_audvis-ave.fif' # Reading evoked = fiff.read_evoked(fname, setno=0, baseline=(None, 0)) layout = read_layout('Vectorview-all') ############################################################################### # Show topography title = 'MNE sample data (condition : %s)' % evoked.comment plot_topo(evoked, layout, title=title) pl.show()
include = [] # or stim channels ['STI 014'] # bad channels in raw.info['bads'] will be automatically excluded # Set up amplitude-peak rejection values for MEG channels reject = dict(grad=4000e-13, mag=4e-12) # pick MEG channels picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=False, eog=True, include=include, exclude='bads') # Create epochs including different events epochs = mne.Epochs(raw, events, dict(audio_l=1, visual_r=3), tmin, tmax, picks=picks, baseline=(None, 0), reject=reject) # Generate list of evoked objects from conditions names evokeds = [epochs[name].average() for name in ('audio_l', 'visual_r')] ############################################################################### # Show topography for two different conditions colors = 'yellow', 'green' title = 'MNE sample data - left auditory and visual' plot_topo(evokeds, color=colors, title=title) conditions = [e.comment for e in evokeds] for cond, col, pos in zip(conditions, colors, (0.025, 0.07)): plt.figtext(0.775, pos, cond, color=col, fontsize=12) plt.show()
""" # Author: Alexandre Gramfort <*****@*****.**> # # License: BSD (3-clause) print __doc__ import pylab as pl from mne import fiff from mne.layouts import Layout from mne.viz import plot_topo from mne.datasets import sample data_path = sample.data_path('.') fname = data_path + '/MEG/sample/sample_audvis-ave.fif' # Reading evoked = fiff.read_evoked(fname, setno=0, baseline=(None, 0)) layout = Layout('Vectorview-all') ############################################################################### # Show topography plot_topo(evoked, layout) title = 'MNE sample data (condition : %s)' % evoked.comment pl.figtext(0.03, 0.93, title, color='w', fontsize=18) pl.show()