def get_layout(o_dir, layout_name): """ **Layout functions in mne depreciated.** Read or generate layout. Layout generated by clicking on input image. Parameters ---------- o_dir : dir dir in which layout is to be read or saved into layout_name : str, default None basename of image used as layout template. if None, "topo.lout" is used. Returns ------- lt : mne layout object """ # Layout function depreciated. Load tetrode layout layout_path = o_dir if layout_name is None: layout_name = "SA5_topo.lout" try: lt = mne.channels.read_layout(layout_name, path=layout_path, scale=False) except: # Generate layout of tetrodes # This code opens the image so you can click on it to designate tetrode positions from mne.viz import ClickableImage # noqa from mne.viz import (plot_alignment, snapshot_brain_montage, set_3d_view) # The click coordinates are stored as a list of tuples template_loc = r'F:\!Imaging\LKC\SA5\SA5_Histology-07.tif' # template location im = plt.imread(template_loc) click = ClickableImage(im) click.plot_clicks() # Generate a layout from our clicks and normalize by the image print('Generating and saving layout...') lt = click.to_layout() # To save if we want lt.save(os.path.join(layout_path, layout_name)) print('Saved layout to', os.path.join(layout_path, layout_name)) # Load and display layout lt = mne.channels.read_layout(layout_name, path=layout_path, scale=False) x = lt.pos[:, 0] * float(im.shape[1]) y = (1 - lt.pos[:, 1]) * float(im.shape[0]) # Flip the y-position fig, ax = plt.subplots() ax.imshow(im) ax.scatter(x, y, s=120, color='r') plt.autoscale(tight=True) ax.set_axis_off() plt.show() return lt
def test_clickable_image(): """Test the ClickableImage class.""" # Gen data and create clickable image im = np.random.randn(100, 100) clk = ClickableImage(im) clicks = [(12, 8), (46, 48), (10, 24)] # Generate clicks for click in clicks: _fake_click(clk.fig, clk.ax, click, xform='data') assert_allclose(np.array(clicks), np.array(clk.coords)) assert_true(len(clicks) == len(clk.coords)) # Exporting to layout lt = clk.to_layout() assert_true(lt.pos.shape[0] == len(clicks)) assert_allclose(lt.pos[1, 0] / lt.pos[2, 0], clicks[1][0] / float(clicks[2][0]))
def test_clickable_image(): """Test the ClickableImage class.""" # Gen data and create clickable image im = np.random.RandomState(0).randn(100, 100) clk = ClickableImage(im) clicks = [(12, 8), (46, 48), (10, 24)] # Generate clicks for click in clicks: _fake_click(clk.fig, clk.ax, click, xform='data') assert_allclose(np.array(clicks), np.array(clk.coords)) assert (len(clicks) == len(clk.coords)) # Exporting to layout lt = clk.to_layout() assert (lt.pos.shape[0] == len(clicks)) assert_allclose(lt.pos[1, 0] / lt.pos[2, 0], clicks[1][0] / float(clicks[2][0])) clk.plot_clicks() plt.close('all')