def test_compute_mne_inverse(): """Test MNE inverse computation """ setno = 0 snr = 3.0 lambda2 = 1.0 / snr**2 dSPM = True res = mne.compute_inverse(fname_data, setno, fname_inv, lambda2, dSPM, baseline=(None, 0)) assert np.all(res['sol'] > 0) assert np.all(res['sol'] < 35)
import os import numpy as np import pylab as pl import mne fname_inv = os.environ['MNE_SAMPLE_DATASET_PATH'] fname_inv += '/MEG/sample/sample_audvis-meg-oct-6-meg-inv.fif' fname_data = os.environ['MNE_SAMPLE_DATASET_PATH'] fname_data += '/MEG/sample/sample_audvis-ave.fif' setno = 0 snr = 3.0 lambda2 = 1.0 / snr**2 dSPM = True res = mne.compute_inverse(fname_data, setno, fname_inv, lambda2, dSPM, baseline=(None, 0)) lh_vertices = res['inv']['src'][0]['vertno'] rh_vertices = res['inv']['src'][1]['vertno'] lh_data = res['sol'][:len(lh_vertices)] rh_data = res['sol'][-len(rh_vertices):] # Save result in stc files mne.write_stc('mne_dSPM_inverse-lh.stc', tmin=res['tmin'], tstep=res['tstep'], vertices=lh_vertices, data=lh_data) mne.write_stc('mne_dSPM_inverse-rh.stc', tmin=res['tmin'], tstep=res['tstep'], vertices=rh_vertices, data=rh_data) ############################################################################### # View activation time-series times = res['tmin'] + res['tstep'] * np.arange(lh_data.shape[1])