示例#1
0
def test_decimate_surface_vtk():
    """Test triangular surface decimation."""
    points = np.array([[-0.00686118, -0.10369860, 0.02615170],
                       [-0.00713948, -0.10370162, 0.02614874],
                       [-0.00686208, -0.10368247, 0.02588313],
                       [-0.00713987, -0.10368724, 0.02587745]])
    tris = np.array([[0, 1, 2], [1, 2, 3], [0, 3, 1], [1, 2, 0]])
    for n_tri in [4, 3, 2]:  # quadric decimation creates even numbered output.
        _, this_tris = decimate_surface(points, tris, n_tri)
        assert len(this_tris) == n_tri if not n_tri % 2 else 2
    with pytest.raises(ValueError, match='exceeds number of original'):
        decimate_surface(points, tris, len(tris) + 1)
    nirvana = 5
    tris = np.array([[0, 1, 2], [1, 2, 3], [0, 3, 1], [1, 2, nirvana]])
    pytest.raises(ValueError, decimate_surface, points, tris, n_tri)
示例#2
0
def test_decimate_surface():
    """Test triangular surface decimation."""
    points = np.array([[-0.00686118, -0.10369860, 0.02615170],
                       [-0.00713948, -0.10370162, 0.02614874],
                       [-0.00686208, -0.10368247, 0.02588313],
                       [-0.00713987, -0.10368724, 0.02587745]])
    tris = np.array([[0, 1, 2], [1, 2, 3], [0, 3, 1], [1, 2, 0]])
    for n_tri in [4, 3, 2]:  # quadric decimation creates even numbered output.
        _, this_tris = decimate_surface(points, tris, n_tri)
        assert_true(len(this_tris) == n_tri if not n_tri % 2 else 2)
    nirvana = 5
    tris = np.array([[0, 1, 2], [1, 2, 3], [0, 3, 1], [1, 2, nirvana]])
    assert_raises(ValueError, decimate_surface, points, tris, n_tri)
示例#3
0
def test_decimate_surface_sphere():
    """Test sphere mode of decimation."""
    rr, tris = _tessellate_sphere(3)
    assert len(rr) == 66
    assert len(tris) == 128
    for kind, n_tri in [('ico', 20), ('oct', 32)]:
        with catch_logging() as log:
            _, tris_new = decimate_surface(
                rr, tris, n_tri, method='sphere', verbose=True)
        log = log.getvalue()
        assert 'Freesurfer' in log
        assert kind in log
        assert len(tris_new) == n_tri
def _run(subjects_dir, subject, force, overwrite, no_decimate, verbose=None):
    this_env = copy.copy(os.environ)
    subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
    this_env['SUBJECTS_DIR'] = subjects_dir
    this_env['SUBJECT'] = subject
    if 'FREESURFER_HOME' not in this_env:
        raise RuntimeError('The FreeSurfer environment needs to be set up '
                           'for this script')
    incomplete = 'warn' if force else 'raise'
    subj_path = op.join(subjects_dir, subject)
    if not op.exists(subj_path):
        raise RuntimeError('%s does not exist. Please check your subject '
                           'directory path.' % subj_path)

    mri = 'T1.mgz' if op.exists(op.join(subj_path, 'mri', 'T1.mgz')) else 'T1'

    logger.info('1. Creating a dense scalp tessellation with mkheadsurf...')

    def check_seghead(surf_path=op.join(subj_path, 'surf')):
        surf = None
        for k in ['lh.seghead', 'lh.smseghead']:
            this_surf = op.join(surf_path, k)
            if op.exists(this_surf):
                surf = this_surf
                break
        return surf

    my_seghead = check_seghead()
    if my_seghead is None:
        run_subprocess(['mkheadsurf', '-subjid', subject, '-srcvol', mri],
                       env=this_env)

    surf = check_seghead()
    if surf is None:
        raise RuntimeError('mkheadsurf did not produce the standard output '
                           'file.')

    bem_dir = op.join(subjects_dir, subject, 'bem')
    if not op.isdir(bem_dir):
        os.mkdir(bem_dir)
    dense_fname = op.join(bem_dir, '%s-head-dense.fif' % subject)
    logger.info('2. Creating %s ...' % dense_fname)
    _check_file(dense_fname, overwrite)
    surf = mne.bem._surfaces_to_bem(
        [surf], [mne.io.constants.FIFF.FIFFV_BEM_SURF_ID_HEAD], [1],
        incomplete=incomplete)[0]
    mne.write_bem_surfaces(dense_fname, surf)
    levels = 'medium', 'sparse'
    tris = [] if no_decimate else [30000, 2500]
    if os.getenv('_MNE_TESTING_SCALP', 'false') == 'true':
        tris = [len(surf['tris'])]  # don't actually decimate
    for ii, (n_tri, level) in enumerate(zip(tris, levels), 3):
        logger.info('%i. Creating %s tessellation...' % (ii, level))
        logger.info('%i.1 Decimating the dense tessellation...' % ii)
        with ETSContext():
            points, tris = mne.decimate_surface(points=surf['rr'],
                                                triangles=surf['tris'],
                                                n_triangles=n_tri)
        dec_fname = dense_fname.replace('dense', level)
        logger.info('%i.2 Creating %s' % (ii, dec_fname))
        _check_file(dec_fname, overwrite)
        dec_surf = mne.bem._surfaces_to_bem(
            [dict(rr=points, tris=tris)],
            [mne.io.constants.FIFF.FIFFV_BEM_SURF_ID_HEAD], [1], rescale=False,
            incomplete=incomplete)
        mne.write_bem_surfaces(dec_fname, dec_surf)
def _run(subjects_dir, subject, force, overwrite, no_decimate, verbose=None):
    this_env = copy.copy(os.environ)
    subjects_dir = get_subjects_dir(subjects_dir, raise_error=True)
    this_env['SUBJECTS_DIR'] = subjects_dir
    this_env['SUBJECT'] = subject
    if 'FREESURFER_HOME' not in this_env:
        raise RuntimeError('The FreeSurfer environment needs to be set up '
                           'for this script')
    incomplete = 'warn' if force else 'raise'
    subj_path = op.join(subjects_dir, subject)
    if not op.exists(subj_path):
        raise RuntimeError('%s does not exist. Please check your subject '
                           'directory path.' % subj_path)

    mri = 'T1.mgz' if op.exists(op.join(subj_path, 'mri', 'T1.mgz')) else 'T1'

    logger.info('1. Creating a dense scalp tessellation with mkheadsurf...')

    def check_seghead(surf_path=op.join(subj_path, 'surf')):
        surf = None
        for k in ['lh.seghead', 'lh.smseghead']:
            this_surf = op.join(surf_path, k)
            if op.exists(this_surf):
                surf = this_surf
                break
        return surf

    my_seghead = check_seghead()
    if my_seghead is None:
        run_subprocess(['mkheadsurf', '-subjid', subject, '-srcvol', mri],
                       env=this_env)

    surf = check_seghead()
    if surf is None:
        raise RuntimeError('mkheadsurf did not produce the standard output '
                           'file.')

    dense_fname = '{0}/{1}/bem/{1}-head-dense.fif'.format(
        subjects_dir, subject)
    logger.info('2. Creating %s ...' % dense_fname)
    _check_file(dense_fname, overwrite)
    surf = mne.bem._surfaces_to_bem(
        [surf], [mne.io.constants.FIFF.FIFFV_BEM_SURF_ID_HEAD], [1],
        incomplete=incomplete)[0]
    mne.write_bem_surfaces(dense_fname, surf)
    levels = 'medium', 'sparse'
    tris = [] if no_decimate else [30000, 2500]
    if os.getenv('_MNE_TESTING_SCALP', 'false') == 'true':
        tris = [len(surf['tris'])]  # don't actually decimate
    for ii, (n_tri, level) in enumerate(zip(tris, levels), 3):
        logger.info('%i. Creating %s tessellation...' % (ii, level))
        logger.info('%i.1 Decimating the dense tessellation...' % ii)
        with ETSContext():
            points, tris = mne.decimate_surface(points=surf['rr'],
                                                triangles=surf['tris'],
                                                n_triangles=n_tri)
        dec_fname = dense_fname.replace('dense', level)
        logger.info('%i.2 Creating %s' % (ii, dec_fname))
        _check_file(dec_fname, overwrite)
        dec_surf = mne.bem._surfaces_to_bem(
            [dict(rr=points, tris=tris)],
            [mne.io.constants.FIFF.FIFFV_BEM_SURF_ID_HEAD], [1],
            rescale=False,
            incomplete=incomplete)
        mne.write_bem_surfaces(dec_fname, dec_surf)
def run(opts):

    subject = opts.subject[0]
    n_jobs = int(opts.n_jobs[0])

    if opts.settingsjsondefaults:
        json_settings_file = opts.settingsjsondefaults[0]
    else:
        json_settings_file = ("%s/processing_settings.json" %
                              os.path.dirname(os.path.realpath(__file__)))

    with open(json_settings_file) as json_file:
        processing_settings = json.load(json_file)

    dwi_output_directory = processing_settings['dwi_output_directory']
    recon_all_dir = processing_settings['recon_all_dir']
    tvb_output_dir = processing_settings['tvb_output']
    connectome_file_names = processing_settings['connectome_file_names']

    parcellation = processing_settings["parcellation"]
    if parcellation == "hcpmmp1":
        borked_names = processing_settings["mrtrix_conversion"]["borked_names"]
        fixed_names = processing_settings["mrtrix_conversion"]["fixed_names"]
    label_info_file = processing_settings["mrtrix_conversion"]["label_info"]

    parc_image = ("%s/%s/%s" %
                  (dwi_output_directory, subject,
                   processing_settings["default_file_names"]["parc_image"]))
    tracts_path = ("%s/%s/%s" %
                   (dwi_output_directory, subject,
                    processing_settings["default_file_names"]["tracts"]))
    weights_path = ("%s/%s/%s" %
                    (dwi_output_directory, subject,
                     processing_settings["default_file_names"]["weights"]))

    tvb_output_path = "%s/sub-%s" % (tvb_output_dir, subject)
    if not os.path.exists(tvb_output_path):
        os.makedirs(tvb_output_path)

    tvb_output = {}

    tvb_output["EEG_Projection_mat"] = "%s/sub-%s_EEGProjection.mat" % (
        tvb_output_path, subject)
    tvb_output["EEG_Projection_npy"] = "%s/sub-%s_EEGProjection.npy" % (
        tvb_output_path, subject)
    tvb_output["EEG_Locations"] = "%s/sub-%s_EEG_Locations.txt" % (
        tvb_output_path, subject)

    tvb_output["region_mapping"] = "%s/sub-%s_region_mapping.txt" % (
        tvb_output_path, subject)
    tvb_output[
        "region_mapping_hires"] = "%s/sub-%s_region_mapping_hires.txt" % (
            tvb_output_path, subject)

    # Fix labels and get centroids and area from parcellation image (voxel)
    parc_img = nib.load(parc_image)
    parc_data = parc_img.get_fdata()
    lables, labels_sizes, label_mean_coordinates = parc_get_mean_coord(
        parc_data, parc_img.affine, closest_value_voxel=True)

    label_info = np.genfromtxt(label_info_file, dtype=str)
    label_names = []
    for label in lables:
        label_names.append(label_info[:, 1][label_info[:,
                                                       0] == str(int(label))])
    label_names = np.array(label_names).flatten()

    if parcellation == "hcpmmp1":
        for i, corr_label in enumerate(fixed_names):
            if borked_names[i] in label_names:
                print(borked_names[i] + "->" + corr_label)
                label_names[label_names == borked_names[i]] = corr_label

        region_names = label_names
        cortical = np.zeros((len(region_names)))
        cortical[:358] = 1
        hemisphere = [1 if name[0] == "R" else 0 for name in region_names]

    # process surfaces
    pial_surf = [
        '%s/%s/surf/lh.pial' % (recon_all_dir, subject),
        '%s/%s/surf/rh.pial' % (recon_all_dir, subject)
    ]
    if parcellation == "hcpmmp1":
        annots = [
            '%s/%s/label/lh.%s_HCP-MMP1.annot' %
            (recon_all_dir, subject, subject),
            '%s/%s/label/rh.%s_HCP-MMP1.annot' %
            (recon_all_dir, subject, subject)
        ]
    cortex_label = [
        '%s/%s/label/lh.cortex.label' % (recon_all_dir, subject),
        '%s/%s/label/rh.cortex.label' % (recon_all_dir, subject)
    ]

    # make a surface output directory
    output_surf_directory = "%s/surf" % tvb_output_path
    if not os.path.exists(output_surf_directory):
        os.makedirs(output_surf_directory)

    v, f, s_info, region_map, surface_labels = subset_surface_by_cortex_label(
        surfs=pial_surf,
        annots=annots,
        cortex_labels=cortex_label,
        subset_labels=label_names,
        output_surf_directory=output_surf_directory)

    s_info_fs = s_info

    #%%
    # =============================================================================
    # compute source space
    # =============================================================================
    # decimate surface

    pial_dec = mne.decimate_surface(v, f, n_triangles=30000)
    nib.freesurfer.io.write_geometry('%s/cortex_dec.srf' %
                                     output_surf_directory,
                                     pial_dec[0],
                                     pial_dec[1],
                                     volume_info=s_info_fs)

    # complete decimated surface (add normals + other parameters)
    pial_dict = {'rr': pial_dec[0] / 1000, 'tris': pial_dec[1]}
    pial_complete = mne.surface.complete_surface_info(pial_dict)

    # construct source space dictionary by hand
    # use all point of the decimated surface as souce space
    src = {
        'rr': pial_complete['rr'],
        'tris': pial_complete['tris'],
        'ntri': pial_complete['ntri'],
        'use_tris': pial_complete['tris'],
        'np': pial_complete['np'],
        'nn': pial_complete['nn'],
        'inuse': np.ones(pial_complete['np']),
        'nuse_tri': pial_complete['ntri'],
        'nuse': pial_complete['np'],
        'vertno': np.arange(0, pial_complete['np']),
        'subject_his_id': subject,
        'dist': None,
        'dist_limit': None,
        'nearest': None,
        'type': 'surf',
        'nearest_dist': None,
        'pinfo': None,
        'patch_inds': None,
        'id':
        101,  # (FIFFV_MNE_SURF_LEFT_HEMI), # shouldn't matter, since we combined both hemispheres into one object
        'coord_frame': 5
    }  # (FIFFV_COORD_MRI)}
    src = mne.SourceSpaces([src])

    #%%
    # =============================================================================
    # compute BEM model + EEG Locations
    # =============================================================================

    #  following line seems to work only when calling this script via command line, when executed within spyder it gives "Command not found: mri_watershed!"
    mne.bem.make_watershed_bem(subject=subject,
                               subjects_dir=recon_all_dir,
                               overwrite=True)
    # This will always fail

    # smooth and shrink the the inner skull surface a little bit. This prevents overlapping surface errors
    v_is, f_is, s_info = nib.freesurfer.read_geometry(
        "%s/%s/bem/watershed/%s_inner_skull_surface" %
        (recon_all_dir, subject, subject),
        read_metadata=True)
    adj = create_adjac_vertex(v_is, f_is)
    v_smooth, f = vectorized_surface_smooth(v_is,
                                            f_is,
                                            adj,
                                            number_of_iter=10,
                                            scalar=None,
                                            lambda_w=0.5,
                                            mode='laplacian',
                                            weighted=True)

    nib.freesurfer.io.write_geometry('%s/%s/bem/inner_skull.surf' %
                                     (recon_all_dir, subject),
                                     v_smooth,
                                     f_is,
                                     volume_info=s_info)

    os.system(
        "cp --remove-destination %s/%s/bem/watershed/%s_outer_skull_surface %s/%s/bem/outer_skull.surf"
        % (recon_all_dir, subject, subject, recon_all_dir, subject))
    os.system(
        "cp --remove-destination %s/%s/bem/watershed/%s_outer_skin_surface %s/%s/bem/outer_skin.surf"
        % (recon_all_dir, subject, subject, recon_all_dir, subject))
    os.system(
        "cp --remove-destination %s/%s/bem/watershed/%s_brain_surface %s/%s/bem/brain.surf"
        % (recon_all_dir, subject, subject, recon_all_dir, subject))

    conductivity = [0.3, 0.006, 0.3]  # for three layers
    try:
        model = mne.make_bem_model(subject=subject,
                                   ico=4,
                                   conductivity=conductivity,
                                   subjects_dir=recon_all_dir,
                                   verbose=True)
    except:
        print(
            "BEM model failed. Running laplacian smoothing on the inner surface (20 interations), and trying again."
        )
        v_is, f_is, s_info = nib.freesurfer.read_geometry(
            "%s/%s/bem/watershed/%s_inner_skull_surface" %
            (recon_all_dir, subject, subject),
            read_metadata=True)
        adj = create_adjac_vertex(v_is, f_is)
        v_smooth, f = vectorized_surface_smooth(v_is,
                                                f_is,
                                                adj,
                                                number_of_iter=20,
                                                scalar=None,
                                                lambda_w=0.5,
                                                mode='laplacian',
                                                weighted=True)
        os.system("rm %s/%s/bem/inner_skull.surf" % (recon_all_dir, subject))
        nib.freesurfer.io.write_geometry('%s/%s/bem/inner_skull.surf' %
                                         (recon_all_dir, subject),
                                         v_smooth,
                                         f_is,
                                         volume_info=s_info)
        try:
            model = mne.make_bem_model(subject=subject,
                                       ico=4,
                                       conductivity=conductivity,
                                       subjects_dir=recon_all_dir,
                                       verbose=True)
        except:
            print(
                "BEM model failed. Running laplacian smoothing on the inner surface (40 interations), and trying again."
            )
            v_is, f_is, s_info = nib.freesurfer.read_geometry(
                "%s/%s/bem/watershed/%s_inner_skull_surface" %
                (recon_all_dir, subject, subject),
                read_metadata=True)
            adj = create_adjac_vertex(v_is, f_is)
            v_smooth, f = vectorized_surface_smooth(v_is,
                                                    f_is,
                                                    adj,
                                                    number_of_iter=40,
                                                    scalar=None,
                                                    lambda_w=0.5,
                                                    mode='laplacian',
                                                    weighted=True)
            os.system("rm %s/%s/bem/inner_skull.surf" %
                      (recon_all_dir, subject))
            nib.freesurfer.io.write_geometry('%s/%s/bem/inner_skull.surf' %
                                             (recon_all_dir, subject),
                                             v_smooth,
                                             f_is,
                                             volume_info=s_info)
            model = mne.make_bem_model(subject=subject,
                                       ico=4,
                                       conductivity=conductivity,
                                       subjects_dir=recon_all_dir,
                                       verbose=True)
    bem = mne.make_bem_solution(model)

    ### GET AND ADJUST EEG LOCATIONS FROM DEFAULT CAP !!!!!!
    # This may produce implausible results if not corrected.
    # Default locations are used here to completely automize the pipeline and to not require manual input (e.g. setting the fiducials and fitting EEG locations.)
    # read default cap
    #	mon = mne.channels.read_montage(kind="biosemi64", unit='auto', transform=True)
    mon = mne.channels.make_standard_montage(kind="biosemi64")
    #mon = mne.channels.read_montage(kind="easycap-M1", unit='auto', transform=False)

    # create info object
    ch_type = ["eeg" for i in range(len(mon.ch_names))]
    #	ch_type[-3:] = ["misc", "misc", "misc"] # needed for caps which include lpa, rpa and nza "channels" at the end
    info = mne.create_info(ch_names=mon.ch_names,
                           sfreq=256,
                           ch_types=ch_type,
                           montage=mon)

    # load head surface
    try:
        surf = mne.get_head_surf(subject=subject,
                                 source="head",
                                 subjects_dir=recon_all_dir)
    except:
        bem_dir = os.path.join(recon_all_dir, subject, 'bem')
        ws_dir = os.path.join(recon_all_dir, subject, 'bem', 'watershed')
        fname_head = os.path.join(bem_dir, subject + '-head.fif')
        if os.path.isfile(fname_head):
            os.remove(fname_head)
        surf = _surfaces_to_bem(
            [os.path.join(ws_dir, subject + '_outer_skin_surface')],
            [FIFF.FIFFV_BEM_SURF_ID_HEAD],
            sigmas=[1])
        write_bem_surfaces(fname_head, surf)
        surf = mne.get_head_surf(subject=subject,
                                 source="head",
                                 subjects_dir=recon_all_dir)

    # project eeg locations onto surface and save into info
    eeg_loc = np.array(
        [info['chs'][i]['loc'][:3] for i in range(len(mon.ch_names))])
    eegp_loc, eegp_nn = _project_onto_surface(eeg_loc,
                                              surf,
                                              project_rrs=True,
                                              return_nn=True)[2:4]
    for i in range(len(mon.ch_names)):
        info['chs'][i]['loc'][:3] = eegp_loc[i, :]

    #%%
    # =============================================================================
    # compute forward solution
    # =============================================================================

    fwd = mne.make_forward_solution(info,
                                    trans=None,
                                    src=src,
                                    bem=bem,
                                    meg=False,
                                    eeg=True,
                                    mindist=0.0,
                                    n_jobs=n_jobs)

    fwd_fixed = mne.convert_forward_solution(fwd,
                                             surf_ori=True,
                                             force_fixed=True,
                                             use_cps=True)
    leadfield = fwd_fixed['sol']['data']

    # write leadfield to file
    sio.savemat(tvb_output["EEG_Projection_mat"],
                mdict={'ProjectionMatrix': leadfield})
    np.save(tvb_output["EEG_Projection_npy"], leadfield)

    #%%
    # =============================================================================
    # save files for TVB
    # =============================================================================
    # get region map for source space (ie. downsampled pial), via nearest neighbour interpolation

    n_vert = pial_complete['np']
    region_map_lores = np.zeros((n_vert))
    vert_hires = v / 1000
    vert_lores = pial_complete['rr']

    # serach nearest neighbour
    idx = spatial.KDTree(vert_hires).query(vert_lores)[1]
    region_map_lores = region_map[idx]

    np.savetxt(tvb_output["region_mapping"], region_map_lores, fmt="%i")
    np.savetxt(tvb_output["region_mapping_hires"], region_map, fmt="%i")

    # write low res labels

    write_out_labels(surface_labels=surface_labels,
                     vert_region_map=region_map_lores,
                     surface_file='%s/cortex_dec.srf' % output_surf_directory,
                     output_directory='%s/decimated_labels_hcpmmp1' %
                     output_surf_directory,
                     parcellation="hcpmmp1",
                     subject=subject)

    # make annot
    os.system("cp %s/cortex_dec.srf %s/%s/surf/lh.cortex_dec.srf" %
              (output_surf_directory, recon_all_dir, subject))
    label_files_long = " --l ".join(
        glob.glob("%s/decimated_labels_hcpmmp1/*label" %
                  output_surf_directory))
    os.system(
        "mris_label2annot --s %s --ctab %s --l %s --annot-path %s/hcpmmp1_dec.annot --surf cortex_dec.srf --h lh --sd %s"
        % (subject, label_info_file, label_files_long, output_surf_directory,
           recon_all_dir))
    os.system("rm %s/%s/surf/lh.cortex_dec.srf" % (recon_all_dir, subject))

    # write BEM surfaces in RAS
    write_surf_tvb(in_surf_file='%s/%s/bem/brain.surf' %
                   (recon_all_dir, subject),
                   out_surf_file="%s/bem_brain.srf" % output_surf_directory,
                   s_info=s_info_fs)

    write_surf_tvb(
        in_surf_file='%s/%s/bem/inner_skull.surf' % (recon_all_dir, subject),
        out_surf_file="%s/bem_inner_skull.srf" % output_surf_directory,
        s_info=s_info_fs)

    write_surf_tvb(
        in_surf_file='%s/%s/bem/outer_skull.surf' % (recon_all_dir, subject),
        out_surf_file="%s/bem_outer_skull.srf" % output_surf_directory,
        s_info=s_info_fs)

    write_surf_tvb(
        in_surf_file='%s/%s/bem/outer_skin.surf' % (recon_all_dir, subject),
        out_surf_file="%s/bem_outer_skin.srf" % output_surf_directory,
        s_info=s_info_fs)

    # [leave this alone for now.]
    # write cortical surface (i.e. source space) to file
    cort_surf_path = tvb_output_path + "/sub-" + subject + "_Cortex/"
    if not os.path.exists(cort_surf_path):
        os.makedirs(cort_surf_path)

    # surface vertices are in ras-tkr coordinates used by freesurfer
    # for them to allign with parc_image, use affine transform to bring them into ras-scanner
    p = Popen(('mri_info --tkr2scanner ' + recon_all_dir + "/" + subject +
               "/mri/aparc+aseg.mgz").split(),
              stdin=PIPE,
              stdout=PIPE,
              stderr=PIPE)
    output, err = p.communicate(
        b"input data that is passed to subprocess' stdin")
    affine_xfm = np.array(
        [i.split() for i in str(output, "utf-8").splitlines()], dtype="float")

    pial_vert_converted = affine_xfm.dot(
        np.concatenate((pial_complete['rr'] * 1000,
                        np.ones((pial_complete['rr'].shape[0], 1))),
                       axis=1).T)[:3, :].T

    # save
    np.savetxt(cort_surf_path + "triangles.txt",
               pial_complete['tris'],
               fmt="%i")
    np.savetxt(cort_surf_path + "vertices.txt",
               pial_vert_converted,
               fmt="%1.6f")
    np.savetxt(cort_surf_path + "normals.txt",
               pial_complete['nn'],
               fmt="%1.6f")

    # zip files
    shutil.make_archive(cort_surf_path[:-1], 'zip', cort_surf_path)
    print("Cortical surface zipped !")
    shutil.rmtree(cort_surf_path)

    # write BEM surfaces too file
    names = [
        "inner_skull_surface", "outer_skull_surface", "outer_skin_surface"
    ]  # "brain_surface",
    for name in names:
        # make dir
        bem_path = tvb_output_path + "/sub-" + subject + "_" + name + "/"
        if not os.path.exists(bem_path):
            os.makedirs(bem_path)
        bem_surf = mne.read_surface(recon_all_dir + "/" + subject +
                                    "/bem/watershed/" + subject + "_" + name)
        bem_dict = {'rr': bem_surf[0], 'tris': bem_surf[1]}
        bem_complete = mne.surface.complete_surface_info(bem_dict)

        bem_vert_converted = affine_xfm.dot(
            np.concatenate(
                (bem_complete['rr'], np.ones(
                    (bem_complete['rr'].shape[0], 1))),
                axis=1).T)[:3, :].T

        # save files
        np.savetxt(bem_path + "triangles.txt", bem_complete['tris'], fmt="%i")
        np.savetxt(bem_path + "vertices.txt", bem_vert_converted, fmt="%1.6f")
        np.savetxt(bem_path + "normals.txt", bem_complete['nn'], fmt="%1.6f")

        # zip folder
        shutil.make_archive(bem_path[:-1], 'zip', bem_path)
        shutil.rmtree(bem_path)
    print("BEM surfaces saved  !")

    # save eeg_locations, are in ras-tkr coordinates used by freesurfer
    # for them to allign with parc_image, use affine transform to bring them into ras-scanner
    eegp_loc_converted = affine_xfm.dot(
        np.concatenate((eegp_loc * 1000, np.ones((eegp_loc.shape[0], 1))),
                       axis=1).T)[:3, :].T

    f = open(tvb_output["EEG_Locations"], "w")
    for i in range(len(eegp_loc_converted)):
        f.write(mon.ch_names[i] + " " + "%.6f" % eegp_loc_converted[i, 0] +
                " " + "%.6f" % eegp_loc_converted[i, 1] + " " +
                "%.6f" % eegp_loc_converted[i, 2] + "\n")
    f.close()

    v_eeg, f_eeg = eeg_sensors_to_surface(eeg_coordinates=eegp_loc_converted,
                                          unit_size=4,
                                          generate=False)
    nib.freesurfer.io.write_geometry(
        '%s/eeg_biosemi64.srf' % (output_surf_directory), v_eeg, f_eeg)

    print("EEG locations saved  !")

    # create and save connectome.zip
    tvb_connectome_path = tvb_output_path + "/sub-" + subject + "_Connectome/"
    if not os.path.exists(tvb_connectome_path):
        os.makedirs(tvb_connectome_path)

    # 1 weights, set diagonal to zero and make it symmetric
    weights = np.genfromtxt(weights_path)
    weights[np.diag_indices_from(weights)] = 0
    i_lower = np.tril_indices_from(weights, -1)
    weights[i_lower] = weights.T[i_lower]
    n_regions = weights.shape[0]
    np.savetxt(tvb_connectome_path + connectome_file_names['weights'],
               weights,
               delimiter="\t")

    print("Weights saved  !")

    # 2 tracts, set diagonal to zero and make it symmetric
    tracts = np.genfromtxt(tracts_path)
    tracts[np.diag_indices_from(tracts)] = 0
    i_lower = np.tril_indices_from(tracts, -1)
    tracts[i_lower] = tracts.T[i_lower]
    np.savetxt(tvb_connectome_path + connectome_file_names['tract_lengths'],
               tracts,
               delimiter="\t")
    print("Tracts saved !")

    #3. centers
    with open(tvb_connectome_path + connectome_file_names['centres'],
              "a") as roicentres:
        for i, roi in enumerate(label_names):
            roicentres.write(
                "%s\t%1.6f\t%1.6f\t%1.6f\n" %
                (roi, label_mean_coordinates[i, 0],
                 label_mean_coordinates[i, 1], label_mean_coordinates[i, 2]))
        voxel_area = parc_img.header['pixdim'][1] * parc_img.header['pixdim'][
            1] * parc_img.header['pixdim'][1]
    print("Centers saved !")

    # 4 orientation
    # First get all Vertex-Normals corresponding to the Vertices of a Region
    # Now compute mean Vector and Normalize the Vector
    # for subcortical regions set [0,0,1]
    orientation = np.zeros((n_regions, 3))
    v_smooth, f, _ = nib.freesurfer.read_geometry('%s/cortex_smooth.srf' %
                                                  output_surf_directory,
                                                  read_metadata=True)
    n = compute_normals(v_smooth, f)
    for i in range(n_regions):
        if cortical[i] == 1:  # cortical regions
            nn = n[region_map == int(i + 1), :]
            orientation[i, :] = nn.mean(axis=0) / np.linalg.norm(
                nn.mean(axis=0))
        elif not cortical[i] == 1:  # subcortical regions
            # select normal vertices of a region, average and normalize them
            orientation[i, :] = np.array([0, 0, 1])
    np.savetxt(tvb_connectome_path +
               connectome_file_names['average_orientations'],
               orientation,
               fmt="%f")
    print("Orientations saved !")

    # 5 area
    area = get_surface_area(surface_file='%s/cortex_smooth.srf' %
                            output_surf_directory,
                            region_map=region_map,
                            verbose=True)
    np.savetxt(tvb_connectome_path + connectome_file_names['areas'],
               area,
               fmt='%1.6f')
    print("Area saved !")

    # 6 cortical
    # connectivity cortical/non-cortical region flags; text file containing one boolean value on each line
    # (as 0 or 1 value) being 1 when corresponding region is cortical.
    # due to error in configuring projection matrix in EEG, see monitors.py, class Projection, def config_for_sim
    # this would need to get fixed, otherwise I don't know how to define the cortical variable or the lead field matrix
    # therefor for now declare all regions as cortical
    np.savetxt(tvb_connectome_path + connectome_file_names['cortical'],
               cortical,
               fmt="%i")
    print("Cortical saved !")

    # 7 hemisphere
    # text file containing one boolean value on each line
    # (as 0 or 1 value) being 1 when corresponding region is in the right hemisphere and 0 when in left hemisphere.
    np.savetxt(tvb_connectome_path + connectome_file_names['hemispheres'],
               hemisphere,
               fmt="%i")
    print("Hemisphere saved !")

    # zip all files
    shutil.make_archive(tvb_connectome_path[:-1], 'zip', tvb_connectome_path)
    print("Connectome zipped !")
    shutil.rmtree(tvb_connectome_path)

    print("TVBconverter has finished !")
示例#7
0
    surf = check_seghead()
    if surf is None:
        print('mkheadsurf did not produce the standard output file.')
        sys.exit(1)

    fif = '{0}/{1}/bem/{1}-head-dense.fif'.format(subj_dir, subject)
    print('2. Creating %s ...' % fif)
    cmd = 'mne_surf2bem --surf %s --id 4 %s --fif %s' % (surf, force, fif)
    my_run_cmd(cmd, 'Failed to create %s, see above' % fif)
    levels = 'medium', 'sparse'
    for ii, (n_tri, level) in enumerate(zip([30000, 2500], levels), 3):
        my_surf = mne.read_bem_surfaces(fif)[0]
        print('%i. Creating medium grade tessellation...' % ii)
        print('%i.1 Decimating the dense tessellation...' % ii)
        points, tris = mne.decimate_surface(points=my_surf['rr'],
                                            triangles=my_surf['tris'],
                                            n_triangles=n_tri)
        out_fif = fif.replace('dense', level)
        print('%i.2 Creating %s' % (ii, out_fif))
        surf_fname = '/tmp/tmp-surf.surf'
        # convert points to meters, make mne_analyze happy
        mne.write_surface(surf_fname, points * 1e3, tris)
        # XXX for some reason --check does not work here.
        cmd = 'mne_surf2bem --surf %s --id 4 --force --fif %s'
        cmd %= (surf_fname, out_fif)
        my_run_cmd(cmd, 'Failed to create %s, see above' % out_fif)
        os.remove(surf_fname)

    sys.exit(0)
    surf = check_seghead()
    if surf is None:
        print 'mkheadsurf did not produce the standard output file.'
        sys.exit(1)

    fif = '{0}/{1}/bem/{1}-head-dense.fif'.format(subj_dir, subject)
    print '2. Creating %s ...' % fif
    cmd = 'mne_surf2bem --surf %s --id 4 %s --fif %s' % (surf, force, fif)
    my_run_cmd(cmd, 'Failed to create %s, see above' % fif)
    levels = 'medium', 'sparse'
    for ii, (n_tri, level) in enumerate(zip([30000, 2500], levels), 3):
        my_surf = mne.read_bem_surfaces(fif)[0]
        print '%i. Creating medium grade tessellation...' % ii
        print '%i.1 Decimating the dense tessellation...' % ii
        points, tris = mne.decimate_surface(points=my_surf['rr'],
                                            triangles=my_surf['tris'],
                                            n_triangles=n_tri)
        out_fif = fif.replace('dense', level)
        print '%i.2 Creating %s' % (ii, out_fif)
        surf_fname = '/tmp/tmp-surf.surf'
        # convert points to meters, make mne_analyze happy
        mne.write_surface(surf_fname, points * 1e3, tris)
        # XXX for some reason --check does not work here.
        cmd = 'mne_surf2bem --surf %s --id 4 --force --fif %s'
        cmd %= (surf_fname, out_fif)
        my_run_cmd(cmd, 'Failed to create %s, see above' % out_fif)
        os.remove(surf_fname)

    sys.exit(0)
def _run(subjects_dir, subject, force, overwrite, verbose=None):
    this_env = copy.copy(os.environ)
    this_env['SUBJECTS_DIR'] = subjects_dir
    this_env['SUBJECT'] = subject

    if 'SUBJECTS_DIR' not in this_env:
        raise RuntimeError('The environment variable SUBJECTS_DIR should '
                           'be set')

    if not op.isdir(subjects_dir):
        raise RuntimeError('subjects directory %s not found, specify using '
                           'the environment variable SUBJECTS_DIR or '
                           'the command line option --subjects-dir')

    if 'MNE_ROOT' not in this_env:
        raise RuntimeError('MNE_ROOT environment variable is not set')

    if 'FREESURFER_HOME' not in this_env:
        raise RuntimeError('The FreeSurfer environment needs to be set up '
                           'for this script')
    force = '--force' if force else '--check'
    subj_path = op.join(subjects_dir, subject)
    if not op.exists(subj_path):
        raise RuntimeError('%s does not exits. Please check your subject '
                           'directory path.' % subj_path)

    if op.exists(op.join(subj_path, 'mri', 'T1.mgz')):
        mri = 'T1.mgz'
    else:
        mri = 'T1'

    logger.info('1. Creating a dense scalp tessellation with mkheadsurf...')

    def check_seghead(surf_path=op.join(subj_path, 'surf')):
        for k in ['/lh.seghead', '/lh.smseghead']:
            surf = surf_path + k if op.exists(surf_path + k) else None
            if surf is not None:
                break
        return surf

    my_seghead = check_seghead()
    if my_seghead is None:
        run_subprocess(['mkheadsurf', '-subjid', subject, '-srcvol', mri],
                       env=this_env)

    surf = check_seghead()
    if surf is None:
        raise RuntimeError('mkheadsurf did not produce the standard output '
                           'file.')

    dense_fname = '{0}/{1}/bem/{1}-head-dense.fif'.format(subjects_dir,
                                                          subject)
    logger.info('2. Creating %s ...' % dense_fname)
    _check_file(dense_fname, overwrite)
    run_subprocess(['mne_surf2bem', '--surf', surf, '--id', '4', force,
                    '--fif', dense_fname], env=this_env)
    levels = 'medium', 'sparse'
    my_surf = mne.read_bem_surfaces(dense_fname)[0]
    tris = [30000, 2500]
    if os.getenv('_MNE_TESTING_SCALP', 'false') == 'true':
        tris = [len(my_surf['tris'])]  # don't actually decimate
    for ii, (n_tri, level) in enumerate(zip(tris, levels), 3):
        logger.info('%i. Creating %s tessellation...' % (ii, level))
        logger.info('%i.1 Decimating the dense tessellation...' % ii)
        points, tris = mne.decimate_surface(points=my_surf['rr'],
                                            triangles=my_surf['tris'],
                                            n_triangles=n_tri)
        other_fname = dense_fname.replace('dense', level)
        logger.info('%i.2 Creating %s' % (ii, other_fname))
        _check_file(other_fname, overwrite)
        tempdir = _TempDir()
        surf_fname = tempdir + '/tmp-surf.surf'
        # convert points to meters, make mne_analyze happy
        mne.write_surface(surf_fname, points * 1e3, tris)
        # XXX for some reason --check does not work here.
        try:
            run_subprocess(['mne_surf2bem', '--surf', surf_fname, '--id', '4',
                            '--force', '--fif', other_fname], env=this_env)
        finally:
            del tempdir
示例#10
0
        hemisphere = np.zeros((n_regions))
        index_hemisphere = np.unique(
            gii_r.darrays[0].data
        )[1:] - 1  # skip the 0 for "subcortical" vertices and remove by 1 because region start counting at 0
        hemisphere[index_hemisphere] = 1

    # all labels appearing in region_map correspond to cortical regions
    cortical = np.zeros((n_regions))
    cortical[np.unique(region_map)] = 1

#%%
# =============================================================================
# compute source space
# =============================================================================
# decimate surface
pial_dec = mne.decimate_surface(pial_vertices, pial_tris, n_triangles=30000)

# complete decimated surface (add normals + other parameters)
pial_dict = {'rr': pial_dec[0], 'tris': pial_dec[1]}
pial_complete = mne.surface.complete_surface_info(pial_dict)

# construct source space dictionary by hand
# use all point of the decimated surface as souce space
src = {
    'rr': pial_complete['rr'],
    'tris': pial_complete['tris'],
    'ntri': pial_complete['ntri'],
    'use_tris': pial_complete['tris'],
    'np': pial_complete['np'],
    'nn': pial_complete['nn'],
    'inuse': np.ones(pial_complete['np']),
            print("Use the --overwrite option to replace exisiting surfaces.")
            sys.exit()

    surf = check_seghead()
    if surf is None:
        print("mkheadsurf did not produce the standard output file.")
        sys.exit(1)

    fif = "{0}/{1}/bem/{1}-head-dense.fif".format(subj_dir, subject)
    print("2. Creating %s ..." % fif)
    cmd = "mne_surf2bem --surf %s --id 4 %s --fif %s" % (surf, force, fif)
    my_run_cmd(cmd, "Failed to create %s, see above" % fif)
    levels = "medium", "sparse"
    for ii, (n_tri, level) in enumerate(zip([30000, 2500], levels), 3):
        my_surf = mne.read_bem_surfaces(fif)[0]
        print("%i. Creating medium grade tessellation..." % ii)
        print("%i.1 Decimating the dense tessellation..." % ii)
        points, tris = mne.decimate_surface(points=my_surf["rr"], triangles=my_surf["tris"], n_triangles=n_tri)
        out_fif = fif.replace("dense", level)
        print("%i.2 Creating %s" % (ii, out_fif))
        surf_fname = "/tmp/tmp-surf.surf"
        # convert points to meters, make mne_analyze happy
        mne.write_surface(surf_fname, points * 1e3, tris)
        # XXX for some reason --check does not work here.
        cmd = "mne_surf2bem --surf %s --id 4 --force --fif %s"
        cmd %= (surf_fname, out_fif)
        my_run_cmd(cmd, "Failed to create %s, see above" % out_fif)
        os.remove(surf_fname)

    sys.exit(0)