示例#1
0
def test_make_sphere_model():
    """Test making a sphere model."""
    info = read_info(fname_raw)
    pytest.raises(ValueError, make_sphere_model, 'foo', 'auto', info)
    pytest.raises(ValueError, make_sphere_model, 'auto', 'auto', None)
    pytest.raises(ValueError, make_sphere_model, 'auto', 'auto', info,
                  relative_radii=(), sigmas=())
    pytest.raises(ValueError, make_sphere_model, 'auto', 'auto', info,
                  relative_radii=(1,))  # wrong number of radii
    # here we just make sure it works -- the functionality is actually
    # tested more extensively e.g. in the forward and dipole code
    with catch_logging() as log:
        bem = make_sphere_model('auto', 'auto', info, verbose=True)
    log = log.getvalue()
    assert ' RV = ' in log
    for line in log.split('\n'):
        if ' RV = ' in line:
            val = float(line.split()[-2])
            assert val < 0.01  # actually decent fitting
            break
    assert '3 layers' in repr(bem)
    assert 'Sphere ' in repr(bem)
    assert ' mm' in repr(bem)
    bem = make_sphere_model('auto', None, info)
    assert 'no layers' in repr(bem)
    assert 'Sphere ' in repr(bem)
    pytest.raises(ValueError, make_sphere_model, sigmas=(0.33,),
                  relative_radii=(1.0,))
def test_volume_source_space():
    """Test setting up volume source spaces."""
    tempdir = _TempDir()
    src = read_source_spaces(fname_vol)
    temp_name = op.join(tempdir, 'temp-src.fif')
    surf = read_bem_surfaces(fname_bem, s_id=FIFF.FIFFV_BEM_SURF_ID_BRAIN)
    surf['rr'] *= 1e3  # convert to mm
    # The one in the testing dataset (uses bem as bounds)
    for bem, surf in zip((fname_bem, None), (None, surf)):
        src_new = setup_volume_source_space(
            'sample', pos=7.0, bem=bem, surface=surf, mri='T1.mgz',
            subjects_dir=subjects_dir)
        write_source_spaces(temp_name, src_new, overwrite=True)
        src[0]['subject_his_id'] = 'sample'  # XXX: to make comparison pass
        _compare_source_spaces(src, src_new, mode='approx')
        del src_new
        src_new = read_source_spaces(temp_name)
        _compare_source_spaces(src, src_new, mode='approx')
    pytest.raises(IOError, setup_volume_source_space, 'sample',
                  pos=7.0, bem=None, surface='foo',  # bad surf
                  mri=fname_mri, subjects_dir=subjects_dir)
    assert repr(src) == repr(src_new)
    assert src.kind == 'volume'
    # Spheres
    sphere = make_sphere_model(r0=(0., 0., 0.), head_radius=0.1,
                               relative_radii=(0.9, 1.0), sigmas=(0.33, 1.0))
    src = setup_volume_source_space(pos=10)
    src_new = setup_volume_source_space(pos=10, sphere=sphere)
    _compare_source_spaces(src, src_new, mode='exact')
    pytest.raises(ValueError, setup_volume_source_space, sphere='foo')
    # Need a radius
    sphere = make_sphere_model(head_radius=None)
    pytest.raises(ValueError, setup_volume_source_space, sphere=sphere)
示例#3
0
def test_make_sphere_model():
    """Test making a sphere model"""
    info = read_info(fname_raw)
    assert_raises(ValueError, make_sphere_model, 'foo', 'auto', info)
    assert_raises(ValueError, make_sphere_model, 'auto', 'auto', None)
    # here we just make sure it works -- the functionality is actually
    # tested more extensively e.g. in the forward and dipole code
    make_sphere_model('auto', 'auto', info)
示例#4
0
def test_make_sphere_model():
    """Test making a sphere model"""
    info = read_info(fname_raw)
    assert_raises(ValueError, make_sphere_model, "foo", "auto", info)
    assert_raises(ValueError, make_sphere_model, "auto", "auto", None)
    # here we just make sure it works -- the functionality is actually
    # tested more extensively e.g. in the forward and dipole code
    bem = make_sphere_model("auto", "auto", info)
    assert_true("3 layers" in repr(bem))
    assert_true("Sphere " in repr(bem))
    assert_true(" mm" in repr(bem))
    bem = make_sphere_model("auto", None, info)
    assert_true("no layers" in repr(bem))
    assert_true("Sphere " in repr(bem))
示例#5
0
def test_make_forward_solution_sphere():
    """Test making a forward solution with a sphere model"""
    temp_dir = _TempDir()
    fname_src_small = op.join(temp_dir, "sample-oct-2-src.fif")
    src = setup_source_space("sample", fname_src_small, "oct2", subjects_dir=subjects_dir, add_dist=False)
    out_name = op.join(temp_dir, "tmp-fwd.fif")
    run_subprocess(
        [
            "mne_forward_solution",
            "--meg",
            "--eeg",
            "--meas",
            fname_raw,
            "--src",
            fname_src_small,
            "--mri",
            fname_trans,
            "--fwd",
            out_name,
        ]
    )
    fwd = read_forward_solution(out_name)
    sphere = make_sphere_model(verbose=True)
    fwd_py = make_forward_solution(fname_raw, fname_trans, src, sphere, meg=True, eeg=True, verbose=True)
    _compare_forwards(fwd, fwd_py, 366, 108, meg_rtol=5e-1, meg_atol=1e-6, eeg_rtol=5e-1, eeg_atol=5e-1)
    # Since the above is pretty lax, let's check a different way
    for meg, eeg in zip([True, False], [False, True]):
        fwd_ = pick_types_forward(fwd, meg=meg, eeg=eeg)
        fwd_py_ = pick_types_forward(fwd, meg=meg, eeg=eeg)
        assert_allclose(np.corrcoef(fwd_["sol"]["data"].ravel(), fwd_py_["sol"]["data"].ravel())[0, 1], 1.0, rtol=1e-3)
示例#6
0
文件: misc.py 项目: Eric89GXL/mnefun
def make_montage(info, kind, check=False):
    from . import _reorder
    assert kind in ('mgh60', 'mgh70', 'uw_70', 'uw_60')
    picks = mne.pick_types(info, meg=False, eeg=True, exclude=())
    if kind in ('mgh60', 'mgh70'):
        ch_names = mne.utils._clean_names(
            [info['ch_names'][pick] for pick in picks], remove_whitespace=True)
        if kind == 'mgh60':
            assert len(ch_names) in (59, 60)
        else:
            assert len(ch_names) in (70,)
        montage = mne.channels.read_montage(kind, ch_names=ch_names)
    else:
        ch_names = getattr(_reorder, 'ch_names_' + kind)
        ch_names = ch_names
        montage = mne.channels.read_montage('standard_1020', ch_names=ch_names)
        assert len(montage.ch_names) == len(ch_names)
        montage.ch_names = ['EEG%03d' % ii for ii in range(1, 61)]
    sphere = mne.make_sphere_model('auto', 'auto', info)
    montage.pos /= np.linalg.norm(montage.pos, axis=-1, keepdims=True)
    montage.pos *= sphere.radius
    montage.pos += sphere['r0']
    info = mne.pick_info(info, picks)
    eeg_pos = np.array([ch['loc'][:3] for ch in info['chs']])
    assert len(eeg_pos) == len(montage.pos), (len(eeg_pos), len(montage.pos))
    if check:
        from mayavi import mlab
        mlab.figure(size=(800, 800))
        mlab.points3d(*sphere['r0'], scale_factor=2 * sphere.radius,
                      color=(0., 0., 1.), opacity=0.1, mode='sphere')
        mlab.points3d(*montage.pos.T, scale_factor=0.01,
                      color=(1, 0, 0), mode='sphere', opacity=0.5)
        mlab.points3d(*eeg_pos.T, scale_factor=0.005, color=(1, 1, 1),
                      mode='sphere', opacity=1)
    return montage, sphere
示例#7
0
def test_apply_inverse_sphere():
    """Test applying an inverse with a sphere model (rank-deficient)."""
    evoked = _get_evoked()
    evoked.pick_channels(evoked.ch_names[:306:8])
    evoked.info['projs'] = []
    cov = make_ad_hoc_cov(evoked.info)
    sphere = make_sphere_model('auto', 'auto', evoked.info)
    fwd = read_forward_solution(fname_fwd)
    vertices = [fwd['src'][0]['vertno'][::5],
                fwd['src'][1]['vertno'][::5]]
    stc = SourceEstimate(np.zeros((sum(len(v) for v in vertices), 1)),
                         vertices, 0., 1.)
    fwd = restrict_forward_to_stc(fwd, stc)
    fwd = make_forward_solution(evoked.info, fwd['mri_head_t'], fwd['src'],
                                sphere, mindist=5.)
    evoked = EvokedArray(fwd['sol']['data'].copy(), evoked.info)
    assert fwd['sol']['nrow'] == 39
    assert fwd['nsource'] == 101
    assert fwd['sol']['ncol'] == 303
    tempdir = _TempDir()
    temp_fname = op.join(tempdir, 'temp-inv.fif')
    inv = make_inverse_operator(evoked.info, fwd, cov, loose=1.)
    # This forces everything to be float32
    write_inverse_operator(temp_fname, inv)
    inv = read_inverse_operator(temp_fname)
    stc = apply_inverse(evoked, inv, method='eLORETA',
                        method_params=dict(eps=1e-2))
    # assert zero localization bias
    assert_array_equal(np.argmax(stc.data, axis=0),
                       np.repeat(np.arange(101), 3))
示例#8
0
def test_simulate_raw_chpi():
    """Test simulation of raw data with cHPI"""
    with warnings.catch_warnings(record=True):  # MaxShield
        raw = Raw(raw_chpi_fname, allow_maxshield=True)
    sphere = make_sphere_model('auto', 'auto', raw.info)
    # make sparse spherical source space
    sphere_vol = tuple(sphere['r0'] * 1000.) + (sphere.radius * 1000.,)
    src = setup_volume_source_space('sample', sphere=sphere_vol, pos=70.)
    stc = _make_stc(raw, src)
    # simulate data with cHPI on
    raw_sim = simulate_raw(raw, stc, None, src, sphere, cov=None, chpi=False)
    raw_chpi = simulate_raw(raw, stc, None, src, sphere, cov=None, chpi=True)
    # XXX we need to test that the cHPI signals are actually in the correct
    # place, but that should be a subsequent enhancement (not trivial to do so)
    psd_sim, freqs_sim = compute_raw_psd(raw_sim)
    psd_chpi, freqs_chpi = compute_raw_psd(raw_chpi)
    assert_array_equal(freqs_sim, freqs_chpi)
    hpi_freqs = np.array([x['custom_ref'][0]
                          for x in raw.info['hpi_meas'][0]['hpi_coils']])
    freq_idx = np.sort([np.argmin(np.abs(freqs_sim - f)) for f in hpi_freqs])
    picks_meg = pick_types(raw.info, meg=True, eeg=False)
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)
    assert_allclose(psd_sim[picks_eeg], psd_chpi[picks_eeg])
    assert_true((psd_chpi[picks_meg][:, freq_idx] >
                 100 * psd_sim[picks_meg][:, freq_idx]).all())
示例#9
0
def test_make_forward_solution_sphere():
    """Test making a forward solution with a sphere model."""
    temp_dir = _TempDir()
    fname_src_small = op.join(temp_dir, 'sample-oct-2-src.fif')
    src = setup_source_space('sample', 'oct2', subjects_dir=subjects_dir,
                             add_dist=False)
    write_source_spaces(fname_src_small, src)  # to enable working with MNE-C
    out_name = op.join(temp_dir, 'tmp-fwd.fif')
    run_subprocess(['mne_forward_solution', '--meg', '--eeg',
                    '--meas', fname_raw, '--src', fname_src_small,
                    '--mri', fname_trans, '--fwd', out_name])
    fwd = read_forward_solution(out_name)
    sphere = make_sphere_model(verbose=True)
    fwd_py = make_forward_solution(fname_raw, fname_trans, src, sphere,
                                   meg=True, eeg=True, verbose=True)
    _compare_forwards(fwd, fwd_py, 366, 108,
                      meg_rtol=5e-1, meg_atol=1e-6,
                      eeg_rtol=5e-1, eeg_atol=5e-1)
    # Since the above is pretty lax, let's check a different way
    for meg, eeg in zip([True, False], [False, True]):
        fwd_ = pick_types_forward(fwd, meg=meg, eeg=eeg)
        fwd_py_ = pick_types_forward(fwd, meg=meg, eeg=eeg)
        assert_allclose(np.corrcoef(fwd_['sol']['data'].ravel(),
                                    fwd_py_['sol']['data'].ravel())[0, 1],
                        1.0, rtol=1e-3)
示例#10
0
def test_simulate_raw_chpi():
    """Test simulation of raw data with cHPI"""
    with warnings.catch_warnings(record=True):  # MaxShield
        raw = Raw(raw_chpi_fname, allow_maxshield=True)
    sphere = make_sphere_model('auto', 'auto', raw.info)
    # make sparse spherical source space
    sphere_vol = tuple(sphere['r0'] * 1000.) + (sphere.radius * 1000.,)
    src = setup_volume_source_space('sample', sphere=sphere_vol, pos=70.)
    stc = _make_stc(raw, src)
    # simulate data with cHPI on
    raw_sim = simulate_raw(raw, stc, None, src, sphere, cov=None, chpi=False)
    # need to trim extra samples off this one
    raw_chpi = simulate_raw(raw, stc, None, src, sphere, cov=None, chpi=True,
                            head_pos=pos_fname)
    # test that the cHPI signals make some reasonable values
    psd_sim, freqs_sim = compute_raw_psd(raw_sim)
    psd_chpi, freqs_chpi = compute_raw_psd(raw_chpi)
    assert_array_equal(freqs_sim, freqs_chpi)
    hpi_freqs = _get_hpi_info(raw.info)[0]
    freq_idx = np.sort([np.argmin(np.abs(freqs_sim - f)) for f in hpi_freqs])
    picks_meg = pick_types(raw.info, meg=True, eeg=False)
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)
    assert_allclose(psd_sim[picks_eeg], psd_chpi[picks_eeg], atol=1e-20)
    assert_true((psd_chpi[picks_meg][:, freq_idx] >
                 100 * psd_sim[picks_meg][:, freq_idx]).all())
    # test localization based on cHPI information
    trans_sim, rot_sim, t_sim = _calculate_chpi_positions(raw_chpi)
    trans, rot, t = get_chpi_positions(pos_fname)
    t -= raw.first_samp / raw.info['sfreq']
    _compare_positions((trans, rot, t), (trans_sim, rot_sim, t_sim),
                       max_dist=0.005)
示例#11
0
def test_volume_labels_morph(tmpdir):
    """Test generating a source space from volume label."""
    # see gh-5224
    evoked = mne.read_evokeds(fname_evoked)[0].crop(0, 0)
    evoked.pick_channels(evoked.ch_names[:306:8])
    evoked.info.normalize_proj()
    n_ch = len(evoked.ch_names)
    aseg_fname = op.join(subjects_dir, 'sample', 'mri', 'aseg.mgz')
    label_names = get_volume_labels_from_aseg(aseg_fname)
    src = setup_volume_source_space(
        'sample', subjects_dir=subjects_dir, volume_label=label_names[:2],
        mri=aseg_fname)
    assert len(src) == 2
    assert src.kind == 'volume'
    n_src = sum(s['nuse'] for s in src)
    sphere = make_sphere_model('auto', 'auto', evoked.info)
    fwd = make_forward_solution(evoked.info, fname_trans, src, sphere)
    assert fwd['sol']['data'].shape == (n_ch, n_src * 3)
    inv = make_inverse_operator(evoked.info, fwd, make_ad_hoc_cov(evoked.info),
                                loose=1.)
    stc = apply_inverse(evoked, inv)
    assert stc.data.shape == (n_src, 1)
    img = stc.as_volume(src, mri_resolution=True)
    n_on = np.array(img.dataobj).astype(bool).sum()
    assert n_on == 291  # was 291 on `master` before gh-5590
    img = stc.as_volume(src, mri_resolution=False)
    n_on = np.array(img.dataobj).astype(bool).sum()
    assert n_on == 44  # was 20 on `master` before gh-5590
示例#12
0
def test_gamma_map_vol_sphere():
    """Gamma MAP with a sphere forward and volumic source space"""
    evoked = read_evokeds(fname_evoked, condition=0, baseline=(None, 0),
                          proj=False)
    evoked.resample(50, npad=100)
    evoked.crop(tmin=0.1, tmax=0.16)  # crop to window around peak

    cov = read_cov(fname_cov)
    cov = regularize(cov, evoked.info)

    info = evoked.info
    sphere = mne.make_sphere_model(r0=(0., 0., 0.), head_radius=0.080)
    src = mne.setup_volume_source_space(subject=None, pos=15., mri=None,
                                        sphere=(0.0, 0.0, 0.0, 80.0),
                                        bem=None, mindist=5.0,
                                        exclude=2.0)
    fwd = mne.make_forward_solution(info, trans=None, src=src, bem=sphere,
                                    eeg=False, meg=True)

    alpha = 0.5
    assert_raises(ValueError, gamma_map, evoked, fwd, cov, alpha,
                  loose=0, return_residual=False)

    assert_raises(ValueError, gamma_map, evoked, fwd, cov, alpha,
                  loose=0.2, return_residual=False)

    stc = gamma_map(evoked, fwd, cov, alpha, tol=1e-4,
                    xyz_same_gamma=False, update_mode=2,
                    return_residual=False)

    assert_array_almost_equal(stc.times, evoked.times, 5)
示例#13
0
def test_make_sphere_model():
    """Test making a sphere model"""
    info = read_info(fname_raw)
    assert_raises(ValueError, make_sphere_model, 'foo', 'auto', info)
    assert_raises(ValueError, make_sphere_model, 'auto', 'auto', None)
    assert_raises(ValueError, make_sphere_model, 'auto', 'auto', info,
                  relative_radii=(), sigmas=())
    assert_raises(ValueError, make_sphere_model, 'auto', 'auto', info,
                  relative_radii=(1,))  # wrong number of radii
    # here we just make sure it works -- the functionality is actually
    # tested more extensively e.g. in the forward and dipole code
    bem = make_sphere_model('auto', 'auto', info)
    assert_true('3 layers' in repr(bem))
    assert_true('Sphere ' in repr(bem))
    assert_true(' mm' in repr(bem))
    bem = make_sphere_model('auto', None, info)
    assert_true('no layers' in repr(bem))
    assert_true('Sphere ' in repr(bem))
示例#14
0
def test_dipole_fitting_fixed():
    """Test dipole fitting with a fixed position."""
    import matplotlib.pyplot as plt
    tpeak = 0.073
    sphere = make_sphere_model(head_radius=0.1)
    evoked = read_evokeds(fname_evo, baseline=(None, 0))[0]
    evoked.pick_types(meg=True)
    t_idx = np.argmin(np.abs(tpeak - evoked.times))
    evoked_crop = evoked.copy().crop(tpeak, tpeak)
    assert_equal(len(evoked_crop.times), 1)
    cov = read_cov(fname_cov)
    dip_seq, resid = fit_dipole(evoked_crop, cov, sphere)
    assert isinstance(dip_seq, Dipole)
    assert isinstance(resid, Evoked)
    assert_equal(len(dip_seq.times), 1)
    pos, ori, gof = dip_seq.pos[0], dip_seq.ori[0], dip_seq.gof[0]
    amp = dip_seq.amplitude[0]
    # Fix position, allow orientation to change
    dip_free, resid_free = fit_dipole(evoked, cov, sphere, pos=pos)
    assert isinstance(dip_free, Dipole)
    assert isinstance(resid_free, Evoked)
    assert_allclose(dip_free.times, evoked.times)
    assert_allclose(np.tile(pos[np.newaxis], (len(evoked.times), 1)),
                    dip_free.pos)
    assert_allclose(ori, dip_free.ori[t_idx])  # should find same ori
    assert (np.dot(dip_free.ori, ori).mean() < 0.9)  # but few the same
    assert_allclose(gof, dip_free.gof[t_idx])  # ... same gof
    assert_allclose(amp, dip_free.amplitude[t_idx])  # and same amp
    assert_allclose(resid.data, resid_free.data[:, [t_idx]])
    # Fix position and orientation
    dip_fixed, resid_fixed = fit_dipole(evoked, cov, sphere, pos=pos, ori=ori)
    assert (isinstance(dip_fixed, DipoleFixed))
    assert_allclose(dip_fixed.times, evoked.times)
    assert_allclose(dip_fixed.info['chs'][0]['loc'][:3], pos)
    assert_allclose(dip_fixed.info['chs'][0]['loc'][3:6], ori)
    assert_allclose(dip_fixed.data[1, t_idx], gof)
    assert_allclose(resid.data, resid_fixed.data[:, [t_idx]])
    _check_roundtrip_fixed(dip_fixed)
    # bad resetting
    evoked.info['bads'] = [evoked.ch_names[3]]
    dip_fixed, resid_fixed = fit_dipole(evoked, cov, sphere, pos=pos, ori=ori)
    # Degenerate conditions
    evoked_nan = evoked.copy().crop(0, 0)
    evoked_nan.data[0, 0] = None
    pytest.raises(ValueError, fit_dipole, evoked_nan, cov, sphere)
    pytest.raises(ValueError, fit_dipole, evoked, cov, sphere, ori=[1, 0, 0])
    pytest.raises(ValueError, fit_dipole, evoked, cov, sphere, pos=[0, 0, 0],
                  ori=[2, 0, 0])
    pytest.raises(ValueError, fit_dipole, evoked, cov, sphere, pos=[0.1, 0, 0])
    # copying
    dip_fixed_2 = dip_fixed.copy()
    dip_fixed_2.data[:] = 0.
    assert not np.isclose(dip_fixed.data, 0., atol=1e-20).any()
    # plotting
    plt.close('all')
    dip_fixed.plot()
    plt.close('all')
示例#15
0
def test_make_forward_solution_discrete():
    """Test making and converting a forward solution with discrete src."""
    # smoke test for depth weighting and discrete source spaces
    src = read_source_spaces(fname_src)[0]
    src = SourceSpaces([src] + setup_volume_source_space(
        pos=dict(rr=src['rr'][src['vertno'][:3]].copy(),
                 nn=src['nn'][src['vertno'][:3]].copy())))
    sphere = make_sphere_model()
    fwd = make_forward_solution(fname_raw, fname_trans, src, sphere,
                                meg=True, eeg=False)
    convert_forward_solution(fwd, surf_ori=True)
示例#16
0
def test_dipole_fitting_ctf():
    """Test dipole fitting with CTF data."""
    raw_ctf = read_raw_ctf(fname_ctf).set_eeg_reference()
    events = make_fixed_length_events(raw_ctf, 1)
    evoked = Epochs(raw_ctf, events, 1, 0, 0, baseline=None).average()
    cov = make_ad_hoc_cov(evoked.info)
    sphere = make_sphere_model((0., 0., 0.))
    # XXX Eventually we should do some better checks about accuracy, but
    # for now our CTF phantom fitting tutorials will have to do
    # (otherwise we need to add that to the testing dataset, which is
    # a bit too big)
    fit_dipole(evoked, cov, sphere)
示例#17
0
def test_make_forward_solution_sphere():
    """Test making a forward solution with a sphere model."""
    temp_dir = _TempDir()
    fname_src_small = op.join(temp_dir, 'sample-oct-2-src.fif')
    src = setup_source_space('sample', 'oct2', subjects_dir=subjects_dir,
                             add_dist=False)
    write_source_spaces(fname_src_small, src)  # to enable working with MNE-C
    out_name = op.join(temp_dir, 'tmp-fwd.fif')
    run_subprocess(['mne_forward_solution', '--meg', '--eeg',
                    '--meas', fname_raw, '--src', fname_src_small,
                    '--mri', fname_trans, '--fwd', out_name])
    fwd = read_forward_solution(out_name)
    sphere = make_sphere_model(verbose=True)
    fwd_py = make_forward_solution(fname_raw, fname_trans, src, sphere,
                                   meg=True, eeg=True, verbose=True)
    _compare_forwards(fwd, fwd_py, 366, 108,
                      meg_rtol=5e-1, meg_atol=1e-6,
                      eeg_rtol=5e-1, eeg_atol=5e-1)
    # Since the above is pretty lax, let's check a different way
    for meg, eeg in zip([True, False], [False, True]):
        fwd_ = pick_types_forward(fwd, meg=meg, eeg=eeg)
        fwd_py_ = pick_types_forward(fwd, meg=meg, eeg=eeg)
        assert_allclose(np.corrcoef(fwd_['sol']['data'].ravel(),
                                    fwd_py_['sol']['data'].ravel())[0, 1],
                        1.0, rtol=1e-3)
    # Number of layers in the sphere model doesn't matter for MEG
    # (as long as no sources are omitted due to distance)
    assert len(sphere['layers']) == 4
    fwd = make_forward_solution(fname_raw, fname_trans, src, sphere,
                                meg=True, eeg=False)
    sphere_1 = make_sphere_model(head_radius=None)
    assert len(sphere_1['layers']) == 0
    assert_array_equal(sphere['r0'], sphere_1['r0'])
    fwd_1 = make_forward_solution(fname_raw, fname_trans, src, sphere,
                                  meg=True, eeg=False)
    _compare_forwards(fwd, fwd_1, 306, 108, meg_rtol=1e-12, meg_atol=1e-12)
    # Homogeneous model
    sphere = make_sphere_model(head_radius=None)
    with pytest.raises(RuntimeError, match='zero shells.*EEG'):
        make_forward_solution(fname_raw, fname_trans, src, sphere)
示例#18
0
def test_inverse_ctf_comp():
    """Test interpolation with compensated CTF data."""
    ctf_dir = op.join(testing.data_path(download=False), 'CTF')
    raw_fname = op.join(ctf_dir, 'somMDYO-18av.ds')
    raw = mne.io.read_raw_ctf(raw_fname)
    raw.apply_gradient_compensation(1)
    sphere = make_sphere_model()
    cov = make_ad_hoc_cov(raw.info)
    src = mne.setup_volume_source_space(
        pos=dict(rr=[[0., 0., 0.01]], nn=[[0., 1., 0.]]))
    fwd = make_forward_solution(raw.info, None, src, sphere, eeg=False)
    inv = make_inverse_operator(raw.info, fwd, cov, loose=1.)
    apply_inverse_raw(raw, inv, 1. / 9.)
示例#19
0
def test_gamma_map_vol_sphere():
    """Gamma MAP with a sphere forward and volumic source space."""
    evoked = read_evokeds(fname_evoked, condition=0, baseline=(None, 0),
                          proj=False)
    evoked.resample(50, npad=100)
    evoked.crop(tmin=0.1, tmax=0.16)  # crop to window around peak

    cov = read_cov(fname_cov)
    cov = regularize(cov, evoked.info, rank=None)

    info = evoked.info
    sphere = mne.make_sphere_model(r0=(0., 0., 0.), head_radius=0.080)
    src = mne.setup_volume_source_space(subject=None, pos=30., mri=None,
                                        sphere=(0.0, 0.0, 0.0, 80.0),
                                        bem=None, mindist=5.0,
                                        exclude=2.0)
    fwd = mne.make_forward_solution(info, trans=None, src=src, bem=sphere,
                                    eeg=False, meg=True)

    alpha = 0.5
    pytest.raises(ValueError, gamma_map, evoked, fwd, cov, alpha,
                  loose=0, return_residual=False)

    pytest.raises(ValueError, gamma_map, evoked, fwd, cov, alpha,
                  loose=0.2, return_residual=False)

    stc = gamma_map(evoked, fwd, cov, alpha, tol=1e-4,
                    xyz_same_gamma=False, update_mode=2,
                    return_residual=False)

    assert_array_almost_equal(stc.times, evoked.times, 5)

    # Compare orientation obtained using fit_dipole and gamma_map
    # for a simulated evoked containing a single dipole
    stc = mne.VolSourceEstimate(50e-9 * np.random.RandomState(42).randn(1, 4),
                                vertices=stc.vertices[:1],
                                tmin=stc.tmin,
                                tstep=stc.tstep)
    evoked_dip = mne.simulation.simulate_evoked(fwd, stc, info, cov, nave=1e9,
                                                use_cps=True)

    dip_gmap = gamma_map(evoked_dip, fwd, cov, 0.1, return_as_dipoles=True)

    amp_max = [np.max(d.amplitude) for d in dip_gmap]
    dip_gmap = dip_gmap[np.argmax(amp_max)]
    assert (dip_gmap[0].pos[0] in src[0]['rr'][stc.vertices])

    dip_fit = mne.fit_dipole(evoked_dip, cov, sphere)[0]
    assert (np.abs(np.dot(dip_fit.ori[0], dip_gmap.ori[0])) > 0.99)
示例#20
0
def compute_bias(raw):
    events = find_events(raw, 'STI201', verbose=False)
    events = events[1:]  # first one has an artifact
    tmin, tmax = -0.2, 0.1
    epochs = mne.Epochs(raw, events, dipole_number, tmin, tmax,
                        baseline=(None, -0.01), preload=True, verbose=False)
    sphere = mne.make_sphere_model(r0=(0., 0., 0.), head_radius=None,
                                   verbose=False)
    cov = mne.compute_covariance(epochs, tmax=0, method='oas',
                                 rank=None, verbose=False)
    idx = epochs.time_as_index(0.036)[0]
    data = epochs.get_data()[:, :, idx].T
    evoked = mne.EvokedArray(data, epochs.info, tmin=0.)
    dip = fit_dipole(evoked, cov, sphere, n_jobs=1, verbose=False)[0]
    actual_pos = mne.dipole.get_phantom_dipoles()[0][dipole_number - 1]
    misses = 1000 * np.linalg.norm(dip.pos - actual_pos, axis=-1)
    return misses
示例#21
0
def test_simulate_raw_chpi():
    """Test simulation of raw data with cHPI."""
    raw = read_raw_fif(raw_chpi_fname, allow_maxshield='yes')
    picks = np.arange(len(raw.ch_names))
    picks = np.setdiff1d(picks, pick_types(raw.info, meg=True, eeg=True)[::4])
    raw.load_data().pick_channels([raw.ch_names[pick] for pick in picks])
    raw.info.normalize_proj()
    sphere = make_sphere_model('auto', 'auto', raw.info)
    # make sparse spherical source space
    sphere_vol = tuple(sphere['r0'] * 1000.) + (sphere.radius * 1000.,)
    src = setup_volume_source_space(sphere=sphere_vol, pos=70.)
    stc = _make_stc(raw, src)
    # simulate data with cHPI on
    with pytest.deprecated_call():
        raw_sim = simulate_raw(raw, stc, None, src, sphere, cov=None,
                               head_pos=pos_fname, interp='zero')
    # need to trim extra samples off this one
    with pytest.deprecated_call():
        raw_chpi = simulate_raw(raw, stc, None, src, sphere, cov=None,
                                chpi=True, head_pos=pos_fname, interp='zero')
    # test cHPI indication
    hpi_freqs, hpi_pick, hpi_ons = _get_hpi_info(raw.info)
    assert_allclose(raw_sim[hpi_pick][0], 0.)
    assert_allclose(raw_chpi[hpi_pick][0], hpi_ons.sum())
    # test that the cHPI signals make some reasonable values
    picks_meg = pick_types(raw.info, meg=True, eeg=False)
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)

    for picks in [picks_meg[:3], picks_eeg[:3]]:
        psd_sim, freqs_sim = psd_welch(raw_sim, picks=picks)
        psd_chpi, freqs_chpi = psd_welch(raw_chpi, picks=picks)

        assert_array_equal(freqs_sim, freqs_chpi)
        freq_idx = np.sort([np.argmin(np.abs(freqs_sim - f))
                            for f in hpi_freqs])
        if picks is picks_meg:
            assert (psd_chpi[:, freq_idx] >
                    100 * psd_sim[:, freq_idx]).all()
        else:
            assert_allclose(psd_sim, psd_chpi, atol=1e-20)

    # test localization based on cHPI information
    quats_sim = _calculate_chpi_positions(raw_chpi, t_step_min=10.)
    quats = read_head_pos(pos_fname)
    _assert_quats(quats, quats_sim, dist_tol=5e-3, angle_tol=3.5)
示例#22
0
def _get_data():
    """Helper to get some starting data"""
    # raw with ECG channel
    raw = Raw(raw_fname).crop(0.0, 5.0).load_data()
    data_picks = pick_types(raw.info, meg=True, eeg=True)
    other_picks = pick_types(raw.info, meg=False, stim=True, eog=True)
    picks = np.sort(np.concatenate((data_picks[::16], other_picks)))
    raw = raw.pick_channels([raw.ch_names[p] for p in picks])
    ecg = RawArray(np.zeros((1, len(raw.times))), create_info(["ECG 063"], raw.info["sfreq"], "ecg"))
    for key in ("dev_head_t", "buffer_size_sec", "highpass", "lowpass", "filename", "dig"):
        ecg.info[key] = raw.info[key]
    raw.add_channels([ecg])

    src = read_source_spaces(src_fname)
    trans = read_trans(trans_fname)
    sphere = make_sphere_model("auto", "auto", raw.info)
    stc = _make_stc(raw, src)
    return raw, src, stc, trans, sphere
示例#23
0
def test_lcmv_ctf_comp():
    """Test interpolation with compensated CTF data."""
    ctf_dir = op.join(testing.data_path(download=False), 'CTF')
    raw_fname = op.join(ctf_dir, 'somMDYO-18av.ds')
    raw = mne.io.read_raw_ctf(raw_fname, preload=True)

    events = mne.make_fixed_length_events(raw, duration=0.2)[:2]
    epochs = mne.Epochs(raw, events, tmin=0., tmax=0.2)
    evoked = epochs.average()

    with pytest.warns(RuntimeWarning,
                      match='Too few samples .* estimate may be unreliable'):
        data_cov = mne.compute_covariance(epochs)
    fwd = mne.make_forward_solution(evoked.info, None,
                                    mne.setup_volume_source_space(pos=15.0),
                                    mne.make_sphere_model())
    filters = mne.beamformer.make_lcmv(evoked.info, fwd, data_cov)
    assert 'weights' in filters
示例#24
0
def test_inverse_ctf_comp():
    """Test interpolation with compensated CTF data."""
    raw = mne.io.read_raw_ctf(fname_raw_ctf).crop(0, 0)
    raw.apply_gradient_compensation(1)
    sphere = make_sphere_model()
    cov = make_ad_hoc_cov(raw.info)
    src = mne.setup_volume_source_space(
        pos=dict(rr=[[0., 0., 0.01]], nn=[[0., 1., 0.]]))
    fwd = make_forward_solution(raw.info, None, src, sphere, eeg=False)
    raw.apply_gradient_compensation(0)
    with pytest.raises(RuntimeError, match='compensation grade mismatch'):
        make_inverse_operator(raw.info, fwd, cov, loose=1.)
    raw.apply_gradient_compensation(1)
    inv = make_inverse_operator(raw.info, fwd, cov, loose=1.)
    apply_inverse_raw(raw, inv, 1. / 9.)  # smoke test
    raw.apply_gradient_compensation(0)
    with pytest.raises(RuntimeError, match='compensation grade mismatch'):
        apply_inverse_raw(raw, inv, 1. / 9.)
示例#25
0
def test_rap_music_sphere():
    """Test RAP-MUSIC with real data, sphere model, MEG only."""
    evoked, noise_cov = _get_data(ch_decim=8)
    sphere = mne.make_sphere_model(r0=(0., 0., 0.04))
    src = mne.setup_volume_source_space(subject=None, pos=10.,
                                        sphere=(0.0, 0.0, 40, 65.0),
                                        mindist=5.0, exclude=0.0)
    forward = mne.make_forward_solution(evoked.info, trans=None, src=src,
                                        bem=sphere)

    dipoles = rap_music(evoked, forward, noise_cov, n_dipoles=2)
    # Test that there is one dipole on each hemisphere
    pos = np.array([dip.pos[0] for dip in dipoles])
    assert_equal(pos.shape, (2, 3))
    assert_equal((pos[:, 0] < 0).sum(), 1)
    assert_equal((pos[:, 0] > 0).sum(), 1)
    # Check the amplitude scale
    assert_true(1e-10 < dipoles[0].amplitude[0] < 1e-7)
示例#26
0
def test_mxne_vol_sphere():
    """(TF-)MxNE with a sphere forward and volumic source space"""
    evoked = read_evokeds(fname_data, condition=0, baseline=(None, 0))
    evoked.crop(tmin=-0.05, tmax=0.2)
    cov = read_cov(fname_cov)

    evoked_l21 = evoked.copy()
    evoked_l21.crop(tmin=0.081, tmax=0.1)

    info = evoked.info
    sphere = mne.make_sphere_model(r0=(0., 0., 0.), head_radius=0.080)
    src = mne.setup_volume_source_space(subject=None, pos=15., mri=None,
                                        sphere=(0.0, 0.0, 0.0, 80.0),
                                        bem=None, mindist=5.0,
                                        exclude=2.0)
    fwd = mne.make_forward_solution(info, trans=None, src=src,
                                    bem=sphere, eeg=False, meg=True)

    alpha = 80.
    assert_raises(ValueError, mixed_norm, evoked, fwd, cov, alpha,
                  loose=0.0, return_residual=False,
                  maxit=3, tol=1e-8, active_set_size=10)

    assert_raises(ValueError, mixed_norm, evoked, fwd, cov, alpha,
                  loose=0.2, return_residual=False,
                  maxit=3, tol=1e-8, active_set_size=10)

    # irMxNE tests
    stc = mixed_norm(evoked_l21, fwd, cov, alpha,
                     n_mxne_iter=1, maxit=30, tol=1e-8,
                     active_set_size=10)
    assert_true(isinstance(stc, VolSourceEstimate))
    assert_array_almost_equal(stc.times, evoked_l21.times, 5)

    # Do with TF-MxNE for test memory savings
    alpha_space = 60.  # spatial regularization parameter
    alpha_time = 1.  # temporal regularization parameter

    stc, _ = tf_mixed_norm(evoked, fwd, cov, alpha_space, alpha_time,
                           maxit=3, tol=1e-4,
                           tstep=16, wsize=32, window=0.1,
                           return_residual=True)
    assert_true(isinstance(stc, VolSourceEstimate))
    assert_array_almost_equal(stc.times, evoked.times, 5)
示例#27
0
def test_simulate_raw_chpi():
    """Test simulation of raw data with cHPI."""
    raw = read_raw_fif(raw_chpi_fname, allow_maxshield='yes',
                       add_eeg_ref=False)
    sphere = make_sphere_model('auto', 'auto', raw.info)
    # make sparse spherical source space
    sphere_vol = tuple(sphere['r0'] * 1000.) + (sphere.radius * 1000.,)
    src = setup_volume_source_space('sample', sphere=sphere_vol, pos=70.)
    stc = _make_stc(raw, src)
    # simulate data with cHPI on
    raw_sim = simulate_raw(raw, stc, None, src, sphere, cov=None, chpi=False)
    # need to trim extra samples off this one
    raw_chpi = simulate_raw(raw, stc, None, src, sphere, cov=None, chpi=True,
                            head_pos=pos_fname)
    # test cHPI indication
    hpi_freqs, _, hpi_pick, hpi_ons = _get_hpi_info(raw.info)[:4]
    assert_allclose(raw_sim[hpi_pick][0], 0.)
    assert_allclose(raw_chpi[hpi_pick][0], hpi_ons.sum())
    # test that the cHPI signals make some reasonable values
    picks_meg = pick_types(raw.info, meg=True, eeg=False)
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)

    for picks in [picks_meg, picks_eeg]:
        psd_sim, freqs_sim = psd_welch(raw_sim, picks=picks)
        psd_chpi, freqs_chpi = psd_welch(raw_chpi, picks=picks)

        assert_array_equal(freqs_sim, freqs_chpi)
        freq_idx = np.sort([np.argmin(np.abs(freqs_sim - f))
                           for f in hpi_freqs])
        if picks is picks_meg:
            assert_true((psd_chpi[:, freq_idx] >
                         100 * psd_sim[:, freq_idx]).all())
        else:
            assert_allclose(psd_sim, psd_chpi, atol=1e-20)

    # test localization based on cHPI information
    quats_sim = _calculate_chpi_positions(raw_chpi)
    trans_sim, rot_sim, t_sim = head_pos_to_trans_rot_t(quats_sim)
    trans, rot, t = head_pos_to_trans_rot_t(read_head_pos(pos_fname))
    t -= raw.first_samp / raw.info['sfreq']
    _compare_positions((trans, rot, t), (trans_sim, rot_sim, t_sim),
                       max_dist=0.005)
示例#28
0
def _get_data():
    """Helper to get some starting data."""
    # raw with ECG channel
    raw = read_raw_fif(raw_fname).crop(0., 5.0).load_data()
    data_picks = pick_types(raw.info, meg=True, eeg=True)
    other_picks = pick_types(raw.info, meg=False, stim=True, eog=True)
    picks = np.sort(np.concatenate((data_picks[::16], other_picks)))
    raw = raw.pick_channels([raw.ch_names[p] for p in picks])
    raw.info.normalize_proj()
    ecg = RawArray(np.zeros((1, len(raw.times))),
                   create_info(['ECG 063'], raw.info['sfreq'], 'ecg'))
    for key in ('dev_head_t', 'buffer_size_sec', 'highpass', 'lowpass', 'dig'):
        ecg.info[key] = raw.info[key]
    raw.add_channels([ecg])

    src = read_source_spaces(src_fname)
    trans = read_trans(trans_fname)
    sphere = make_sphere_model('auto', 'auto', raw.info)
    stc = _make_stc(raw, src)
    return raw, src, stc, trans, sphere
示例#29
0
def test_dipole_fitting_fixed():
    """Test dipole fitting with a fixed position"""
    tpeak = 0.073
    sphere = make_sphere_model(head_radius=0.1)
    evoked = read_evokeds(fname_evo, baseline=(None, 0))[0]
    evoked.pick_types(meg=True)
    t_idx = np.argmin(np.abs(tpeak - evoked.times))
    evoked_crop = evoked.copy().crop(tpeak, tpeak)
    assert_equal(len(evoked_crop.times), 1)
    cov = read_cov(fname_cov)
    dip_seq, resid = fit_dipole(evoked_crop, cov, sphere)
    assert_true(isinstance(dip_seq, Dipole))
    assert_equal(len(dip_seq.times), 1)
    pos, ori, gof = dip_seq.pos[0], dip_seq.ori[0], dip_seq.gof[0]
    amp = dip_seq.amplitude[0]
    # Fix position, allow orientation to change
    dip_free, resid_free = fit_dipole(evoked, cov, sphere, pos=pos)
    assert_true(isinstance(dip_free, Dipole))
    assert_allclose(dip_free.times, evoked.times)
    assert_allclose(np.tile(pos[np.newaxis], (len(evoked.times), 1)),
                    dip_free.pos)
    assert_allclose(ori, dip_free.ori[t_idx])  # should find same ori
    assert_true(np.dot(dip_free.ori, ori).mean() < 0.9)  # but few the same
    assert_allclose(gof, dip_free.gof[t_idx])  # ... same gof
    assert_allclose(amp, dip_free.amplitude[t_idx])  # and same amp
    assert_allclose(resid, resid_free[:, [t_idx]])
    # Fix position and orientation
    dip_fixed, resid_fixed = fit_dipole(evoked, cov, sphere, pos=pos, ori=ori)
    assert_true(isinstance(dip_fixed, DipoleFixed))
    assert_allclose(dip_fixed.times, evoked.times)
    assert_allclose(dip_fixed.info['chs'][0]['loc'][:3], pos)
    assert_allclose(dip_fixed.info['chs'][0]['loc'][3:6], ori)
    assert_allclose(dip_fixed.data[1, t_idx], gof)
    assert_allclose(resid, resid_fixed[:, [t_idx]])
    _check_roundtrip_fixed(dip_fixed)
    # Degenerate conditions
    assert_raises(ValueError, fit_dipole, evoked, cov, sphere, pos=[0])
    assert_raises(ValueError, fit_dipole, evoked, cov, sphere, ori=[1, 0, 0])
    assert_raises(ValueError, fit_dipole, evoked, cov, sphere, pos=[0, 0, 0],
                  ori=[2, 0, 0])
    assert_raises(ValueError, fit_dipole, evoked, cov, sphere, pos=[0.1, 0, 0])
示例#30
0
def test_accuracy():
    """Test dipole fitting to sub-mm accuracy."""
    evoked = read_evokeds(fname_evo)[0].crop(0., 0.,)
    evoked.pick_types(meg=True, eeg=False)
    evoked.pick_channels([c for c in evoked.ch_names[::4]])
    for rad, perc_90 in zip((0.09, None), (0.002, 0.004)):
        bem = make_sphere_model('auto', rad, evoked.info,
                                relative_radii=(0.999, 0.998, 0.997, 0.995))
        src = read_source_spaces(fname_src)

        fwd = make_forward_solution(evoked.info, None, src, bem)
        fwd = convert_forward_solution(fwd, force_fixed=True, use_cps=True)
        vertices = [src[0]['vertno'], src[1]['vertno']]
        n_vertices = sum(len(v) for v in vertices)
        amp = 10e-9
        data = np.eye(n_vertices + 1)[:n_vertices]
        data[-1, -1] = 1.
        data *= amp
        stc = SourceEstimate(data, vertices, 0., 1e-3, 'sample')
        evoked.info.normalize_proj()
        sim = simulate_evoked(fwd, stc, evoked.info, cov=None, nave=np.inf)

        cov = make_ad_hoc_cov(evoked.info)
        dip = fit_dipole(sim, cov, bem, min_dist=0.001)[0]

        ds = []
        for vi in range(n_vertices):
            if vi < len(vertices[0]):
                hi = 0
                vertno = vi
            else:
                hi = 1
                vertno = vi - len(vertices[0])
            vertno = src[hi]['vertno'][vertno]
            rr = src[hi]['rr'][vertno]
            d = np.sqrt(np.sum((rr - dip.pos[vi]) ** 2))
            ds.append(d)
        # make sure that our median is sub-mm and the large majority are very
        # close (we expect some to be off by a bit e.g. because they are
        # radial)
        assert_true((np.percentile(ds, [50, 90]) < [0.0005, perc_90]).all())
示例#31
0
def test_iterable():
    """Test iterable support for simulate_raw."""
    raw = read_raw_fif(raw_fname_short).load_data()
    raw.pick_channels(raw.ch_names[:10] + ['STI 014'])
    src = setup_volume_source_space(
        pos=dict(rr=[[-0.05, 0, 0], [0.1, 0, 0]],
                 nn=[[0, 1., 0], [0, 1., 0]]))
    assert src.kind == 'discrete'
    trans = None
    sphere = make_sphere_model(head_radius=None, info=raw.info)
    tstep = 1. / raw.info['sfreq']
    rng = np.random.RandomState(0)
    vertices = np.array([1])
    data = rng.randn(1, 2)
    stc = VolSourceEstimate(data, vertices, 0, tstep)
    assert isinstance(stc.vertices, np.ndarray)
    with pytest.raises(ValueError, match='at least three time points'):
        simulate_raw(raw.info, stc, trans, src, sphere, None)
    data = rng.randn(1, 1000)
    n_events = (len(raw.times) - 1) // 1000 + 1
    stc = VolSourceEstimate(data, vertices, 0, tstep)
    assert isinstance(stc.vertices, np.ndarray)
    raw_sim = simulate_raw(raw.info, [stc] * 15, trans, src, sphere, None,
                           first_samp=raw.first_samp)
    raw_sim.crop(0, raw.times[-1])
    assert_allclose(raw.times, raw_sim.times)
    events = find_events(raw_sim, initial_event=True)
    assert len(events) == n_events
    assert_array_equal(events[:, 2], 1)

    # Degenerate STCs
    with pytest.raises(RuntimeError,
                       match=r'Iterable did not provide stc\[0\]'):
        simulate_raw(raw.info, [], trans, src, sphere, None)
    # tuple with ndarray
    event_data = np.zeros(len(stc.times), int)
    event_data[0] = 3
    raw_new = simulate_raw(raw.info, [(stc, event_data)] * 15,
                           trans, src, sphere, None, first_samp=raw.first_samp)
    assert raw_new.n_times == 15000
    raw_new.crop(0, raw.times[-1])
    _assert_iter_sim(raw_sim, raw_new, 3)
    with pytest.raises(ValueError, match='event data had shape .* but need'):
        simulate_raw(raw.info, [(stc, event_data[:-1])], trans, src, sphere,
                     None)
    with pytest.raises(ValueError, match='stim_data in a stc tuple .* int'):
        simulate_raw(raw.info, [(stc, event_data * 1.)], trans, src, sphere,
                     None)

    # iterable
    def stc_iter():
        stim_data = np.zeros(len(stc.times), int)
        stim_data[0] = 4
        ii = 0
        while ii < 15:
            ii += 1
            yield (stc, stim_data)
    raw_new = simulate_raw(raw.info, stc_iter(), trans, src, sphere, None,
                           first_samp=raw.first_samp)
    raw_new.crop(0, raw.times[-1])
    _assert_iter_sim(raw_sim, raw_new, 4)

    def stc_iter_bad():
        ii = 0
        while ii < 100:
            ii += 1
            yield (stc, 4, 3)
    with pytest.raises(ValueError, match='stc, if tuple, must be length'):
        simulate_raw(raw.info, stc_iter_bad(), trans, src, sphere, None)
    _assert_iter_sim(raw_sim, raw_new, 4)

    def stc_iter_bad():
        ii = 0
        while ii < 100:
            ii += 1
            stc_new = stc.copy()
            stc_new.vertices = np.array([ii % 2])
            yield stc_new
    with pytest.raises(RuntimeError, match=r'Vertex mismatch for stc\[1\]'):
        simulate_raw(raw.info, stc_iter_bad(), trans, src, sphere, None)

    # Forward omission
    vertices = np.array([0, 1])
    data = rng.randn(2, 1000)
    stc = VolSourceEstimate(data, vertices, 0, tstep)
    assert isinstance(stc.vertices, np.ndarray)
    # XXX eventually we should support filtering based on sphere radius, too,
    # by refactoring the code in source_space.py that does it!
    surf = _get_ico_surface(3)
    surf['rr'] *= 60  # mm
    model = _surfaces_to_bem([surf], [FIFF.FIFFV_BEM_SURF_ID_BRAIN], [0.3])
    bem = make_bem_solution(model)
    with pytest.warns(RuntimeWarning,
                      match='1 of 2 SourceEstimate vertices'):
        simulate_raw(raw.info, stc, trans, src, bem, None)
示例#32
0
def test_plot_alignment():
    """Test plotting of -trans.fif files and MEG sensor layouts."""
    # generate fiducials file for testing
    tempdir = _TempDir()
    fiducials_path = op.join(tempdir, 'fiducials.fif')
    fid = [{'coord_frame': 5, 'ident': 1, 'kind': 1,
            'r': [-0.08061612, -0.02908875, -0.04131077]},
           {'coord_frame': 5, 'ident': 2, 'kind': 1,
            'r': [0.00146763, 0.08506715, -0.03483611]},
           {'coord_frame': 5, 'ident': 3, 'kind': 1,
            'r': [0.08436285, -0.02850276, -0.04127743]}]
    write_dig(fiducials_path, fid, 5)

    mlab = _import_mlab()
    evoked = read_evokeds(evoked_fname)[0]
    sample_src = read_source_spaces(src_fname)
    with warnings.catch_warnings(record=True):  # 4D weight tables
        bti = read_raw_bti(pdf_fname, config_fname, hs_fname, convert=True,
                           preload=False).info
    infos = dict(
        Neuromag=evoked.info,
        CTF=read_raw_ctf(ctf_fname).info,
        BTi=bti,
        KIT=read_raw_kit(sqd_fname).info,
    )
    for system, info in infos.items():
        meg = ['helmet', 'sensors']
        if system == 'KIT':
            meg.append('ref')
        plot_alignment(info, trans_fname, subject='sample',
                       subjects_dir=subjects_dir, meg=meg)
        mlab.close(all=True)
    # KIT ref sensor coil def is defined
    mlab.close(all=True)
    info = infos['Neuromag']
    assert_raises(TypeError, plot_alignment, 'foo', trans_fname,
                  subject='sample', subjects_dir=subjects_dir)
    assert_raises(TypeError, plot_alignment, info, trans_fname,
                  subject='sample', subjects_dir=subjects_dir, src='foo')
    assert_raises(ValueError, plot_alignment, info, trans_fname,
                  subject='fsaverage', subjects_dir=subjects_dir,
                  src=sample_src)
    sample_src.plot(subjects_dir=subjects_dir, head=True, skull=True,
                    brain='white')
    mlab.close(all=True)
    # no-head version
    mlab.close(all=True)
    # all coord frames
    for coord_frame in ('meg', 'head', 'mri'):
        plot_alignment(info, meg=['helmet', 'sensors'], dig=True,
                       coord_frame=coord_frame, trans=trans_fname,
                       subject='sample', mri_fiducials=fiducials_path,
                       subjects_dir=subjects_dir, src=sample_src)
        mlab.close(all=True)
    # EEG only with strange options
    evoked_eeg_ecog = evoked.copy().pick_types(meg=False, eeg=True)
    evoked_eeg_ecog.info['projs'] = []  # "remove" avg proj
    evoked_eeg_ecog.set_channel_types({'EEG 001': 'ecog'})
    with warnings.catch_warnings(record=True) as w:
        plot_alignment(evoked_eeg_ecog.info, subject='sample',
                       trans=trans_fname, subjects_dir=subjects_dir,
                       surfaces=['white', 'outer_skin', 'outer_skull'],
                       meg=['helmet', 'sensors'],
                       eeg=['original', 'projected'], ecog=True)
    mlab.close(all=True)
    assert_true(['Cannot plot MEG' in str(ww.message) for ww in w])

    sphere = make_sphere_model(info=evoked.info, r0='auto', head_radius='auto')
    bem_sol = read_bem_solution(op.join(subjects_dir, 'sample', 'bem',
                                        'sample-1280-1280-1280-bem-sol.fif'))
    bem_surfs = read_bem_surfaces(op.join(subjects_dir, 'sample', 'bem',
                                          'sample-1280-1280-1280-bem.fif'))
    sample_src[0]['coord_frame'] = 4  # hack for coverage
    plot_alignment(info, trans_fname, subject='sample', meg='helmet',
                   subjects_dir=subjects_dir, eeg='projected', bem=sphere,
                   surfaces=['head', 'brain'], src=sample_src)
    plot_alignment(info, trans_fname, subject='sample', meg=[],
                   subjects_dir=subjects_dir, bem=bem_sol, eeg=True,
                   surfaces=['head', 'inflated', 'outer_skull', 'inner_skull'])
    plot_alignment(info, trans_fname, subject='sample',
                   meg=True, subjects_dir=subjects_dir,
                   surfaces=['head', 'inner_skull'], bem=bem_surfs)
    sphere = make_sphere_model('auto', None, evoked.info)  # one layer
    plot_alignment(info, trans_fname, subject='sample', meg=False,
                   coord_frame='mri', subjects_dir=subjects_dir,
                   surfaces=['brain'], bem=sphere)
    # one layer bem with skull surfaces:
    assert_raises(ValueError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir,
                  surfaces=['brain', 'head', 'inner_skull'], bem=sphere)
    # wrong eeg value:
    assert_raises(ValueError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir, eeg='foo')
    # wrong meg value:
    assert_raises(ValueError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir, meg='bar')
    # multiple brain surfaces:
    assert_raises(ValueError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir,
                  surfaces=['white', 'pial'])
    assert_raises(TypeError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir,
                  surfaces=[1])
    assert_raises(ValueError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir,
                  surfaces=['foo'])
示例#33
0
import mne
from mne.datasets import sample
import numpy as np
from sim_funcs import fit_dips

sphere = mne.make_sphere_model(r0=(0., 0., 0.),
                               head_radius=None)  # Use this for all testing

perts = dict(max_percent_imb=10,
             variance_imb=0,
             preferred_side_imb=1,
             max_error_nn=0,
             variance_nn=0,
             preferred_direction_nn=0,
             max_translation=4)
sign = perts['preferred_side_imb']
max_imbalance = perts['max_percent_imb']
max_shift = perts['max_translation']
local_data_path = 'C:\Pert_Inv\Local_mne_data\side%s' % (sign, )
min_rad, max_rad = 0, 90

big_data = np.zeros(
    (max_shift + 1, max_imbalance + 1, max_rad - min_rad + 1, 22))
nn = [0, 1, 1]
sourcenorm = [0, 1, 0] / np.linalg.norm([0, 1, 0])
for l in range(0, max_shift + 1):
    perts['max_translation'] = l
    for k in range(0, max_imbalance + 1):
        perts['max_percent_imb'] = k
        dip_fit_long, dip_fit_pert, testsources = fit_dips(
            min_rad, max_rad, nn, sphere, perts, sourcenorm)
示例#34
0
def test_simulate_raw_sphere():
    """Test simulation of raw data with sphere model."""
    seed = 42
    raw, src, stc, trans, sphere = _get_data()
    assert len(pick_types(raw.info, meg=False, ecg=True)) == 1

    # head pos
    head_pos_sim = dict()
    # these will be at 1., 2., ... sec
    shifts = [[0.001, 0., -0.001], [-0.001, 0.001, 0.]]

    for time_key, shift in enumerate(shifts):
        # Create 4x4 matrix transform and normalize
        temp_trans = deepcopy(raw.info['dev_head_t'])
        temp_trans['trans'][:3, 3] += shift
        head_pos_sim[time_key + 1.] = temp_trans['trans']

    #
    # Test raw simulation with basic parameters
    #
    raw_sim = simulate_raw(raw,
                           stc,
                           trans,
                           src,
                           sphere,
                           read_cov(cov_fname),
                           head_pos=head_pos_sim,
                           blink=True,
                           ecg=True,
                           random_state=seed,
                           use_cps=True)
    raw_sim_2 = simulate_raw(raw,
                             stc,
                             trans_fname,
                             src_fname,
                             sphere,
                             cov_fname,
                             head_pos=head_pos_sim,
                             blink=True,
                             ecg=True,
                             random_state=seed,
                             use_cps=True)
    assert_array_equal(raw_sim_2[:][0], raw_sim[:][0])
    std = dict(grad=2e-13, mag=10e-15, eeg=0.1e-6)
    raw_sim = simulate_raw(raw,
                           stc,
                           trans,
                           src,
                           sphere,
                           make_ad_hoc_cov(raw.info, std=std),
                           head_pos=head_pos_sim,
                           blink=True,
                           ecg=True,
                           random_state=seed,
                           use_cps=True)
    raw_sim_2 = simulate_raw(raw,
                             stc,
                             trans_fname,
                             src_fname,
                             sphere,
                             cov=std,
                             head_pos=head_pos_sim,
                             blink=True,
                             ecg=True,
                             random_state=seed,
                             use_cps=True)
    assert_array_equal(raw_sim_2[:][0], raw_sim[:][0])
    sphere_norad = make_sphere_model('auto', None, raw.info)
    raw_meg = raw.copy().pick_types()
    raw_sim = simulate_raw(raw_meg,
                           stc,
                           trans,
                           src,
                           sphere_norad,
                           make_ad_hoc_cov(raw.info, std=None),
                           head_pos=head_pos_sim,
                           blink=True,
                           ecg=True,
                           random_state=seed,
                           use_cps=True)
    raw_sim_2 = simulate_raw(raw_meg,
                             stc,
                             trans_fname,
                             src_fname,
                             sphere_norad,
                             cov='simple',
                             head_pos=head_pos_sim,
                             blink=True,
                             ecg=True,
                             random_state=seed,
                             use_cps=True)
    assert_array_equal(raw_sim_2[:][0], raw_sim[:][0])
    # Test IO on processed data
    tempdir = _TempDir()
    test_outname = op.join(tempdir, 'sim_test_raw.fif')
    raw_sim.save(test_outname)

    raw_sim_loaded = read_raw_fif(test_outname, preload=True)
    assert_allclose(raw_sim_loaded[:][0], raw_sim[:][0], rtol=1e-6, atol=1e-20)
    del raw_sim, raw_sim_2
    # with no cov (no noise) but with artifacts, most time periods should match
    # but the EOG/ECG channels should not
    for ecg, eog in ((True, False), (False, True), (True, True)):
        raw_sim_3 = simulate_raw(raw,
                                 stc,
                                 trans,
                                 src,
                                 sphere,
                                 cov=None,
                                 head_pos=head_pos_sim,
                                 blink=eog,
                                 ecg=ecg,
                                 random_state=seed,
                                 use_cps=True)
        raw_sim_4 = simulate_raw(raw,
                                 stc,
                                 trans,
                                 src,
                                 sphere,
                                 cov=None,
                                 head_pos=head_pos_sim,
                                 blink=False,
                                 ecg=False,
                                 random_state=seed,
                                 use_cps=True)
        picks = np.arange(len(raw.ch_names))
        diff_picks = pick_types(raw.info, meg=False, ecg=ecg, eog=eog)
        these_picks = np.setdiff1d(picks, diff_picks)
        close = np.isclose(raw_sim_3[these_picks][0],
                           raw_sim_4[these_picks][0],
                           atol=1e-20)
        assert np.mean(close) > 0.7
        far = ~np.isclose(
            raw_sim_3[diff_picks][0], raw_sim_4[diff_picks][0], atol=1e-20)
        assert np.mean(far) > 0.99
    del raw_sim_3, raw_sim_4

    # make sure it works with EEG-only and MEG-only
    raw_sim_meg = simulate_raw(raw.copy().pick_types(meg=True, eeg=False),
                               stc,
                               trans,
                               src,
                               sphere,
                               cov=None,
                               ecg=True,
                               blink=True,
                               random_state=seed,
                               use_cps=True)
    raw_sim_eeg = simulate_raw(raw.copy().pick_types(meg=False, eeg=True),
                               stc,
                               trans,
                               src,
                               sphere,
                               cov=None,
                               ecg=True,
                               blink=True,
                               random_state=seed,
                               use_cps=True)
    raw_sim_meeg = simulate_raw(raw.copy().pick_types(meg=True, eeg=True),
                                stc,
                                trans,
                                src,
                                sphere,
                                cov=None,
                                ecg=True,
                                blink=True,
                                random_state=seed,
                                use_cps=True)
    assert_allclose(np.concatenate((raw_sim_meg[:][0], raw_sim_eeg[:][0])),
                    raw_sim_meeg[:][0],
                    rtol=1e-7,
                    atol=1e-20)
    del raw_sim_meg, raw_sim_eeg, raw_sim_meeg

    # check that different interpolations are similar given small movements
    raw_sim = simulate_raw(raw,
                           stc,
                           trans,
                           src,
                           sphere,
                           cov=None,
                           head_pos=head_pos_sim,
                           interp='linear',
                           use_cps=True)
    raw_sim_hann = simulate_raw(raw,
                                stc,
                                trans,
                                src,
                                sphere,
                                cov=None,
                                head_pos=head_pos_sim,
                                interp='hann',
                                use_cps=True)
    assert_allclose(raw_sim[:][0], raw_sim_hann[:][0], rtol=1e-1, atol=1e-14)
    del raw_sim, raw_sim_hann

    # Make impossible transform (translate up into helmet) and ensure failure
    head_pos_sim_err = deepcopy(head_pos_sim)
    head_pos_sim_err[1.][2, 3] -= 0.1  # z trans upward 10cm
    pytest.raises(RuntimeError,
                  simulate_raw,
                  raw,
                  stc,
                  trans,
                  src,
                  sphere,
                  ecg=False,
                  blink=False,
                  head_pos=head_pos_sim_err,
                  use_cps=True)
    pytest.raises(RuntimeError,
                  simulate_raw,
                  raw,
                  stc,
                  trans,
                  src,
                  bem_fname,
                  ecg=False,
                  blink=False,
                  head_pos=head_pos_sim_err,
                  use_cps=True)
    # other degenerate conditions
    pytest.raises(TypeError,
                  simulate_raw,
                  'foo',
                  stc,
                  trans,
                  src,
                  sphere,
                  use_cps=True)
    pytest.raises(TypeError,
                  simulate_raw,
                  raw,
                  'foo',
                  trans,
                  src,
                  sphere,
                  use_cps=True)
    pytest.raises(ValueError,
                  simulate_raw,
                  raw,
                  stc.copy().crop(0, 0),
                  trans,
                  src,
                  sphere,
                  use_cps=True)
    stc_bad = stc.copy()
    stc_bad.tstep += 0.1
    pytest.raises(ValueError,
                  simulate_raw,
                  raw,
                  stc_bad,
                  trans,
                  src,
                  sphere,
                  use_cps=True)
    pytest.raises(TypeError,
                  simulate_raw,
                  raw,
                  stc,
                  trans,
                  src,
                  sphere,
                  cov=0,
                  use_cps=True)  # wrong covariance type
    pytest.raises(RuntimeError,
                  simulate_raw,
                  raw,
                  stc,
                  trans,
                  src,
                  sphere,
                  chpi=True,
                  use_cps=True)  # no cHPI info
    pytest.raises(ValueError,
                  simulate_raw,
                  raw,
                  stc,
                  trans,
                  src,
                  sphere,
                  interp='foo',
                  use_cps=True)
    pytest.raises(TypeError,
                  simulate_raw,
                  raw,
                  stc,
                  trans,
                  src,
                  sphere,
                  head_pos=1.,
                  use_cps=True)
    pytest.raises(RuntimeError,
                  simulate_raw,
                  raw,
                  stc,
                  trans,
                  src,
                  sphere,
                  head_pos=pos_fname,
                  use_cps=True)  # ends up with t>t_end
    head_pos_sim_err = deepcopy(head_pos_sim)
    head_pos_sim_err[-1.] = head_pos_sim_err[1.]  # negative time
    pytest.raises(RuntimeError,
                  simulate_raw,
                  raw,
                  stc,
                  trans,
                  src,
                  sphere,
                  head_pos=head_pos_sim_err,
                  use_cps=True)
    raw_bad = raw.copy()
    raw_bad.info['dig'] = None
    pytest.raises(RuntimeError,
                  simulate_raw,
                  raw_bad,
                  stc,
                  trans,
                  src,
                  sphere,
                  blink=True,
                  use_cps=True)
示例#35
0
def test_dipole_fitting(tmpdir):
    """Test dipole fitting."""
    amp = 100e-9
    tempdir = str(tmpdir)
    rng = np.random.RandomState(0)
    fname_dtemp = op.join(tempdir, 'test.dip')
    fname_sim = op.join(tempdir, 'test-ave.fif')
    fwd = convert_forward_solution(read_forward_solution(fname_fwd),
                                   surf_ori=False,
                                   force_fixed=True,
                                   use_cps=True)
    evoked = read_evokeds(fname_evo)[0]
    cov = read_cov(fname_cov)
    n_per_hemi = 5
    vertices = [
        np.sort(rng.permutation(s['vertno'])[:n_per_hemi]) for s in fwd['src']
    ]
    nv = sum(len(v) for v in vertices)
    stc = SourceEstimate(amp * np.eye(nv), vertices, 0, 0.001)
    evoked = simulate_evoked(fwd,
                             stc,
                             evoked.info,
                             cov,
                             nave=evoked.nave,
                             random_state=rng)
    # For speed, let's use a subset of channels (strange but works)
    picks = np.sort(
        np.concatenate([
            pick_types(evoked.info, meg=True, eeg=False)[::2],
            pick_types(evoked.info, meg=False, eeg=True)[::2]
        ]))
    evoked.pick_channels([evoked.ch_names[p] for p in picks])
    evoked.add_proj(make_eeg_average_ref_proj(evoked.info))
    write_evokeds(fname_sim, evoked)

    # Run MNE-C version
    run_subprocess([
        'mne_dipole_fit',
        '--meas',
        fname_sim,
        '--meg',
        '--eeg',
        '--noise',
        fname_cov,
        '--dip',
        fname_dtemp,
        '--mri',
        fname_fwd,
        '--reg',
        '0',
        '--tmin',
        '0',
    ])
    dip_c = read_dipole(fname_dtemp)

    # Run mne-python version
    sphere = make_sphere_model(head_radius=0.1)
    with pytest.warns(RuntimeWarning, match='projection'):
        dip, residual = fit_dipole(evoked, cov, sphere, fname_fwd)
    assert isinstance(residual, Evoked)

    # Sanity check: do our residuals have less power than orig data?
    data_rms = np.sqrt(np.sum(evoked.data**2, axis=0))
    resi_rms = np.sqrt(np.sum(residual.data**2, axis=0))
    assert (data_rms > resi_rms * 0.95).all(), \
        '%s (factor: %s)' % ((data_rms / resi_rms).min(), 0.95)

    # Compare to original points
    transform_surface_to(fwd['src'][0], 'head', fwd['mri_head_t'])
    transform_surface_to(fwd['src'][1], 'head', fwd['mri_head_t'])
    assert fwd['src'][0]['coord_frame'] == FIFF.FIFFV_COORD_HEAD
    src_rr = np.concatenate([s['rr'][v] for s, v in zip(fwd['src'], vertices)],
                            axis=0)
    src_nn = np.concatenate([s['nn'][v] for s, v in zip(fwd['src'], vertices)],
                            axis=0)

    # MNE-C skips the last "time" point :(
    out = dip.crop(dip_c.times[0], dip_c.times[-1])
    assert (dip is out)
    src_rr, src_nn = src_rr[:-1], src_nn[:-1]

    # check that we did about as well
    corrs, dists, gc_dists, amp_errs, gofs = [], [], [], [], []
    for d in (dip_c, dip):
        new = d.pos
        diffs = new - src_rr
        corrs += [np.corrcoef(src_rr.ravel(), new.ravel())[0, 1]]
        dists += [np.sqrt(np.mean(np.sum(diffs * diffs, axis=1)))]
        gc_dists += [
            180 / np.pi * np.mean(np.arccos(np.sum(src_nn * d.ori, axis=1)))
        ]
        amp_errs += [np.sqrt(np.mean((amp - d.amplitude)**2))]
        gofs += [np.mean(d.gof)]
    # XXX possibly some OpenBLAS numerical differences make
    # things slightly worse for us
    factor = 0.7
    assert dists[0] / factor >= dists[1], 'dists: %s' % dists
    assert corrs[0] * factor <= corrs[1], 'corrs: %s' % corrs
    assert gc_dists[0] / factor >= gc_dists[1] * 0.8, \
        'gc-dists (ori): %s' % gc_dists
    assert amp_errs[0] / factor >= amp_errs[1],\
        'amplitude errors: %s' % amp_errs
    # This one is weird because our cov/sim/picking is weird
    assert gofs[0] * factor <= gofs[1] * 2, 'gof: %s' % gofs
示例#36
0
def test_plot_alignment_basic(tmp_path, renderer, mixed_fwd_cov_evoked):
    """Test plotting of -trans.fif files and MEG sensor layouts."""
    # generate fiducials file for testing
    tempdir = str(tmp_path)
    fiducials_path = op.join(tempdir, 'fiducials.fif')
    fid = [{
        'coord_frame': 5,
        'ident': 1,
        'kind': 1,
        'r': [-0.08061612, -0.02908875, -0.04131077]
    }, {
        'coord_frame': 5,
        'ident': 2,
        'kind': 1,
        'r': [0.00146763, 0.08506715, -0.03483611]
    }, {
        'coord_frame': 5,
        'ident': 3,
        'kind': 1,
        'r': [0.08436285, -0.02850276, -0.04127743]
    }]
    write_dig(fiducials_path, fid, 5)
    evoked = read_evokeds(evoked_fname)[0]
    info = evoked.info

    sample_src = read_source_spaces(src_fname)
    pytest.raises(TypeError,
                  plot_alignment,
                  'foo',
                  trans_fname,
                  subject='sample',
                  subjects_dir=subjects_dir)
    pytest.raises(OSError,
                  plot_alignment,
                  info,
                  trans_fname,
                  subject='sample',
                  subjects_dir=subjects_dir,
                  src='foo')
    pytest.raises(ValueError,
                  plot_alignment,
                  info,
                  trans_fname,
                  subject='fsaverage',
                  subjects_dir=subjects_dir,
                  src=sample_src)
    sample_src.plot(subjects_dir=subjects_dir,
                    head=True,
                    skull=True,
                    brain='white')
    # mixed source space
    mixed_src = mixed_fwd_cov_evoked[0]['src']
    assert mixed_src.kind == 'mixed'
    fig = plot_alignment(info,
                         meg=['helmet', 'sensors'],
                         dig=True,
                         coord_frame='head',
                         trans=Path(trans_fname),
                         subject='sample',
                         mri_fiducials=fiducials_path,
                         subjects_dir=subjects_dir,
                         src=mixed_src)
    assert isinstance(fig, Figure3D)
    renderer.backend._close_all()
    # no-head version
    renderer.backend._close_all()
    # trans required
    with pytest.raises(ValueError, match='transformation matrix.*in head'):
        plot_alignment(info, trans=None, src=src_fname)
    with pytest.raises(ValueError, match='transformation matrix.*in head'):
        plot_alignment(info, trans=None, mri_fiducials=True)
    with pytest.raises(ValueError, match='transformation matrix.*in head'):
        plot_alignment(info, trans=None, surfaces=['brain'])
    assert mixed_src[0]['coord_frame'] == FIFF.FIFFV_COORD_HEAD
    with pytest.raises(ValueError, match='head-coordinate source space in mr'):
        plot_alignment(trans=None, src=mixed_src, coord_frame='mri')
    # all coord frames
    plot_alignment(info)  # works: surfaces='auto' default
    for coord_frame in ('meg', 'head', 'mri'):
        plot_alignment(info,
                       meg=['helmet', 'sensors'],
                       dig=True,
                       coord_frame=coord_frame,
                       trans=Path(trans_fname),
                       subject='sample',
                       src=src_fname,
                       mri_fiducials=fiducials_path,
                       subjects_dir=subjects_dir)
    renderer.backend._close_all()
    # EEG only with strange options
    evoked_eeg_ecog_seeg = evoked.copy().pick_types(meg=False, eeg=True)
    with evoked_eeg_ecog_seeg.info._unlock():
        evoked_eeg_ecog_seeg.info['projs'] = []  # "remove" avg proj
    evoked_eeg_ecog_seeg.set_channel_types({
        'EEG 001': 'ecog',
        'EEG 002': 'seeg'
    })
    with catch_logging() as log:
        plot_alignment(evoked_eeg_ecog_seeg.info,
                       subject='sample',
                       trans=trans_fname,
                       subjects_dir=subjects_dir,
                       surfaces=['white', 'outer_skin', 'outer_skull'],
                       meg=['helmet', 'sensors'],
                       eeg=['original', 'projected'],
                       ecog=True,
                       seeg=True,
                       verbose=True)
    log = log.getvalue()
    assert 'ecog: 1' in log
    assert 'seeg: 1' in log
    renderer.backend._close_all()

    sphere = make_sphere_model(info=info, r0='auto', head_radius='auto')
    bem_sol = read_bem_solution(
        op.join(subjects_dir, 'sample', 'bem',
                'sample-1280-1280-1280-bem-sol.fif'))
    bem_surfs = read_bem_surfaces(
        op.join(subjects_dir, 'sample', 'bem',
                'sample-1280-1280-1280-bem.fif'))
    sample_src[0]['coord_frame'] = 4  # hack for coverage
    plot_alignment(
        info,
        trans_fname,
        subject='sample',
        eeg='projected',
        meg='helmet',
        bem=sphere,
        dig=True,
        surfaces=['brain', 'inner_skull', 'outer_skull', 'outer_skin'])
    plot_alignment(info,
                   trans_fname,
                   subject='sample',
                   meg='helmet',
                   subjects_dir=subjects_dir,
                   eeg='projected',
                   bem=sphere,
                   surfaces=['head', 'brain'],
                   src=sample_src)
    # no trans okay, no mri surfaces
    plot_alignment(info, bem=sphere, surfaces=['brain'])
    with pytest.raises(ValueError, match='A head surface is required'):
        plot_alignment(info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       eeg='projected',
                       surfaces=[])
    with pytest.raises(RuntimeError, match='No brain surface found'):
        plot_alignment(info,
                       trans=trans_fname,
                       subject='foo',
                       subjects_dir=subjects_dir,
                       surfaces=['brain'])
    assert all(surf['coord_frame'] == FIFF.FIFFV_COORD_MRI
               for surf in bem_sol['surfs'])
    plot_alignment(info,
                   trans_fname,
                   subject='sample',
                   meg=[],
                   subjects_dir=subjects_dir,
                   bem=bem_sol,
                   eeg=True,
                   surfaces=['head', 'inflated', 'outer_skull', 'inner_skull'])
    assert all(surf['coord_frame'] == FIFF.FIFFV_COORD_MRI
               for surf in bem_sol['surfs'])
    plot_alignment(info,
                   trans_fname,
                   subject='sample',
                   meg=True,
                   subjects_dir=subjects_dir,
                   surfaces=['head', 'inner_skull'],
                   bem=bem_surfs)
    # single-layer BEM can still plot head surface
    assert bem_surfs[-1]['id'] == FIFF.FIFFV_BEM_SURF_ID_BRAIN
    bem_sol_homog = read_bem_solution(
        op.join(subjects_dir, 'sample', 'bem', 'sample-1280-bem-sol.fif'))
    for use_bem in (bem_surfs[-1:], bem_sol_homog):
        with catch_logging() as log:
            plot_alignment(info,
                           trans_fname,
                           subject='sample',
                           meg=True,
                           subjects_dir=subjects_dir,
                           surfaces=['head', 'inner_skull'],
                           bem=use_bem,
                           verbose=True)
        log = log.getvalue()
        assert 'not find the surface for head in the provided BEM model' in log
    # sphere model
    sphere = make_sphere_model('auto', 'auto', info)
    src = setup_volume_source_space(sphere=sphere)
    plot_alignment(
        info,
        trans=Transform('head', 'mri'),
        eeg='projected',
        meg='helmet',
        bem=sphere,
        src=src,
        dig=True,
        surfaces=['brain', 'inner_skull', 'outer_skull', 'outer_skin'])
    sphere = make_sphere_model('auto', None, info)  # one layer
    # if you ask for a brain surface with a 1-layer sphere model it's an error
    with pytest.raises(RuntimeError, match='Sphere model does not have'):
        plot_alignment(trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       surfaces=['brain'],
                       bem=sphere)
    # but you can ask for a specific brain surface, and
    # no info is permitted
    plot_alignment(trans=trans_fname,
                   subject='sample',
                   meg=False,
                   coord_frame='mri',
                   subjects_dir=subjects_dir,
                   surfaces=['white'],
                   bem=sphere,
                   show_axes=True)
    renderer.backend._close_all()
    # TODO: We need to make this class public and document it properly
    # assert isinstance(fig, some_public_class)
    # 3D coil with no defined draw (ConvexHull)
    info_cube = pick_info(info, np.arange(6))
    with info._unlock():
        info['dig'] = None
    info_cube['chs'][0]['coil_type'] = 9999
    info_cube['chs'][1]['coil_type'] = 9998
    with pytest.raises(RuntimeError, match='coil definition not found'):
        plot_alignment(info_cube, meg='sensors', surfaces=())
    coil_def_fname = op.join(tempdir, 'temp')
    with open(coil_def_fname, 'w') as fid:
        fid.write(coil_3d)
    # make sure our other OPMs can be plotted, too
    for ii, kind in enumerate(
        ('QUSPIN_ZFOPM_MAG', 'QUSPIN_ZFOPM_MAG2', 'FIELDLINE_OPM_MAG_GEN1',
         'KERNEL_OPM_MAG_GEN1'), 2):
        info_cube['chs'][ii]['coil_type'] = getattr(FIFF, f'FIFFV_COIL_{kind}')
    with use_coil_def(coil_def_fname):
        with catch_logging() as log:
            plot_alignment(info_cube,
                           meg='sensors',
                           surfaces=(),
                           dig=True,
                           verbose='debug')
    log = log.getvalue()
    assert 'planar geometry' in log

    # one layer bem with skull surfaces:
    with pytest.raises(RuntimeError, match='Sphere model does not.*boundary'):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       surfaces=['brain', 'head', 'inner_skull'],
                       bem=sphere)
    # wrong eeg value:
    with pytest.raises(ValueError, match='Invalid value for the .eeg'):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       eeg='foo')
    # wrong meg value:
    with pytest.raises(ValueError, match='Invalid value for the .meg'):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       meg='bar')
    # multiple brain surfaces:
    with pytest.raises(ValueError, match='Only one brain surface can be plot'):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       surfaces=['white', 'pial'])
    with pytest.raises(TypeError, match='surfaces.*must be'):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       surfaces=[1])
    with pytest.raises(ValueError, match='Unknown surface type'):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       surfaces=['foo'])
    with pytest.raises(TypeError, match="must be an instance of "):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       surfaces=dict(brain='super clear'))
    with pytest.raises(ValueError, match="must be between 0 and 1"):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       surfaces=dict(brain=42))
    fwd_fname = op.join(data_dir, 'MEG', 'sample',
                        'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
    fwd = read_forward_solution(fwd_fname)
    plot_alignment(subject='sample',
                   subjects_dir=subjects_dir,
                   trans=trans_fname,
                   fwd=fwd,
                   surfaces='white',
                   coord_frame='head')
    fwd = convert_forward_solution(fwd, force_fixed=True)
    plot_alignment(subject='sample',
                   subjects_dir=subjects_dir,
                   trans=trans_fname,
                   fwd=fwd,
                   surfaces='white',
                   coord_frame='head')
    fwd['coord_frame'] = FIFF.FIFFV_COORD_MRI  # check required to get to MRI
    with pytest.raises(ValueError, match='transformation matrix.*in head coo'):
        plot_alignment(info, trans=None, fwd=fwd)
    # surfaces as dict
    plot_alignment(subject='sample',
                   coord_frame='head',
                   trans=trans_fname,
                   subjects_dir=subjects_dir,
                   surfaces={
                       'white': 0.4,
                       'outer_skull': 0.6,
                       'head': None
                   })
示例#37
0
def test_plot_alignment(tmpdir, renderer):
    """Test plotting of -trans.fif files and MEG sensor layouts."""
    # generate fiducials file for testing
    tempdir = str(tmpdir)
    fiducials_path = op.join(tempdir, 'fiducials.fif')
    fid = [{
        'coord_frame': 5,
        'ident': 1,
        'kind': 1,
        'r': [-0.08061612, -0.02908875, -0.04131077]
    }, {
        'coord_frame': 5,
        'ident': 2,
        'kind': 1,
        'r': [0.00146763, 0.08506715, -0.03483611]
    }, {
        'coord_frame': 5,
        'ident': 3,
        'kind': 1,
        'r': [0.08436285, -0.02850276, -0.04127743]
    }]
    write_dig(fiducials_path, fid, 5)

    renderer.backend._close_all()
    evoked = read_evokeds(evoked_fname)[0]
    sample_src = read_source_spaces(src_fname)
    bti = read_raw_bti(pdf_fname,
                       config_fname,
                       hs_fname,
                       convert=True,
                       preload=False).info
    infos = dict(
        Neuromag=evoked.info,
        CTF=read_raw_ctf(ctf_fname).info,
        BTi=bti,
        KIT=read_raw_kit(sqd_fname).info,
    )
    for system, info in infos.items():
        meg = ['helmet', 'sensors']
        if system == 'KIT':
            meg.append('ref')
        fig = plot_alignment(info,
                             read_trans(trans_fname),
                             subject='sample',
                             subjects_dir=subjects_dir,
                             meg=meg)
        rend = renderer.backend._Renderer(fig=fig)
        rend.close()
    # KIT ref sensor coil def is defined
    renderer.backend._close_all()
    info = infos['Neuromag']
    pytest.raises(TypeError,
                  plot_alignment,
                  'foo',
                  trans_fname,
                  subject='sample',
                  subjects_dir=subjects_dir)
    pytest.raises(OSError,
                  plot_alignment,
                  info,
                  trans_fname,
                  subject='sample',
                  subjects_dir=subjects_dir,
                  src='foo')
    pytest.raises(ValueError,
                  plot_alignment,
                  info,
                  trans_fname,
                  subject='fsaverage',
                  subjects_dir=subjects_dir,
                  src=sample_src)
    sample_src.plot(subjects_dir=subjects_dir,
                    head=True,
                    skull=True,
                    brain='white')
    renderer.backend._close_all()
    # no-head version
    renderer.backend._close_all()
    # all coord frames
    plot_alignment(info)  # works: surfaces='auto' default
    for coord_frame in ('meg', 'head', 'mri'):
        fig = plot_alignment(info,
                             meg=['helmet', 'sensors'],
                             dig=True,
                             coord_frame=coord_frame,
                             trans=Path(trans_fname),
                             subject='sample',
                             mri_fiducials=fiducials_path,
                             subjects_dir=subjects_dir,
                             src=src_fname)
    renderer.backend._close_all()
    # EEG only with strange options
    evoked_eeg_ecog_seeg = evoked.copy().pick_types(meg=False, eeg=True)
    evoked_eeg_ecog_seeg.info['projs'] = []  # "remove" avg proj
    evoked_eeg_ecog_seeg.set_channel_types({
        'EEG 001': 'ecog',
        'EEG 002': 'seeg'
    })
    with pytest.warns(RuntimeWarning, match='Cannot plot MEG'):
        plot_alignment(evoked_eeg_ecog_seeg.info,
                       subject='sample',
                       trans=trans_fname,
                       subjects_dir=subjects_dir,
                       surfaces=['white', 'outer_skin', 'outer_skull'],
                       meg=['helmet', 'sensors'],
                       eeg=['original', 'projected'],
                       ecog=True,
                       seeg=True)
    renderer.backend._close_all()

    sphere = make_sphere_model(info=evoked.info, r0='auto', head_radius='auto')
    bem_sol = read_bem_solution(
        op.join(subjects_dir, 'sample', 'bem',
                'sample-1280-1280-1280-bem-sol.fif'))
    bem_surfs = read_bem_surfaces(
        op.join(subjects_dir, 'sample', 'bem',
                'sample-1280-1280-1280-bem.fif'))
    sample_src[0]['coord_frame'] = 4  # hack for coverage
    plot_alignment(
        info,
        subject='sample',
        eeg='projected',
        meg='helmet',
        bem=sphere,
        dig=True,
        surfaces=['brain', 'inner_skull', 'outer_skull', 'outer_skin'])
    plot_alignment(info,
                   trans_fname,
                   subject='sample',
                   meg='helmet',
                   subjects_dir=subjects_dir,
                   eeg='projected',
                   bem=sphere,
                   surfaces=['head', 'brain'],
                   src=sample_src)
    assert all(surf['coord_frame'] == FIFF.FIFFV_COORD_MRI
               for surf in bem_sol['surfs'])
    plot_alignment(info,
                   trans_fname,
                   subject='sample',
                   meg=[],
                   subjects_dir=subjects_dir,
                   bem=bem_sol,
                   eeg=True,
                   surfaces=['head', 'inflated', 'outer_skull', 'inner_skull'])
    assert all(surf['coord_frame'] == FIFF.FIFFV_COORD_MRI
               for surf in bem_sol['surfs'])
    plot_alignment(info,
                   trans_fname,
                   subject='sample',
                   meg=True,
                   subjects_dir=subjects_dir,
                   surfaces=['head', 'inner_skull'],
                   bem=bem_surfs)
    # single-layer BEM can still plot head surface
    assert bem_surfs[-1]['id'] == FIFF.FIFFV_BEM_SURF_ID_BRAIN
    bem_sol_homog = read_bem_solution(
        op.join(subjects_dir, 'sample', 'bem', 'sample-1280-bem-sol.fif'))
    for use_bem in (bem_surfs[-1:], bem_sol_homog):
        with catch_logging() as log:
            plot_alignment(info,
                           trans_fname,
                           subject='sample',
                           meg=True,
                           subjects_dir=subjects_dir,
                           surfaces=['head', 'inner_skull'],
                           bem=use_bem,
                           verbose=True)
        log = log.getvalue()
        assert 'not find the surface for head in the provided BEM model' in log
    # sphere model
    sphere = make_sphere_model('auto', 'auto', evoked.info)
    src = setup_volume_source_space(sphere=sphere)
    plot_alignment(
        info,
        eeg='projected',
        meg='helmet',
        bem=sphere,
        src=src,
        dig=True,
        surfaces=['brain', 'inner_skull', 'outer_skull', 'outer_skin'])
    sphere = make_sphere_model('auto', None, evoked.info)  # one layer
    # no info is permitted
    fig = plot_alignment(trans=trans_fname,
                         subject='sample',
                         meg=False,
                         coord_frame='mri',
                         subjects_dir=subjects_dir,
                         surfaces=['brain'],
                         bem=sphere,
                         show_axes=True)
    renderer.backend._close_all()
    if renderer._get_3d_backend() == 'mayavi':
        import mayavi  # noqa: F401 analysis:ignore
        assert isinstance(fig, mayavi.core.scene.Scene)

    # 3D coil with no defined draw (ConvexHull)
    info_cube = pick_info(info, [0])
    info['dig'] = None
    info_cube['chs'][0]['coil_type'] = 9999
    with pytest.raises(RuntimeError, match='coil definition not found'):
        plot_alignment(info_cube, meg='sensors', surfaces=())
    coil_def_fname = op.join(tempdir, 'temp')
    with open(coil_def_fname, 'w') as fid:
        fid.write(coil_3d)
    with use_coil_def(coil_def_fname):
        plot_alignment(info_cube, meg='sensors', surfaces=(), dig=True)

    # one layer bem with skull surfaces:
    with pytest.raises(ValueError, match='sphere conductor model must have'):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       surfaces=['brain', 'head', 'inner_skull'],
                       bem=sphere)
    # wrong eeg value:
    with pytest.raises(ValueError, match='Invalid value for the .eeg'):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       eeg='foo')
    # wrong meg value:
    with pytest.raises(ValueError, match='Invalid value for the .meg'):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       meg='bar')
    # multiple brain surfaces:
    with pytest.raises(ValueError, match='Only one brain surface can be plot'):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       surfaces=['white', 'pial'])
    with pytest.raises(TypeError, match='all entries in surfaces must be'):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       surfaces=[1])
    with pytest.raises(ValueError, match='Unknown surface type'):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       surfaces=['foo'])
    fwd_fname = op.join(data_dir, 'MEG', 'sample',
                        'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
    fwd = read_forward_solution(fwd_fname)
    plot_alignment(subject='sample',
                   subjects_dir=subjects_dir,
                   trans=trans_fname,
                   fwd=fwd,
                   surfaces='white',
                   coord_frame='head')
    fwd = convert_forward_solution(fwd, force_fixed=True)
    plot_alignment(subject='sample',
                   subjects_dir=subjects_dir,
                   trans=trans_fname,
                   fwd=fwd,
                   surfaces='white',
                   coord_frame='head')

    # fNIRS
    info = read_raw_nirx(nirx_fname).info
    with catch_logging() as log:
        plot_alignment(info, subject='fsaverage', surfaces=(), verbose=True)
    log = log.getvalue()
    assert '26 fnirs pairs' in log

    with catch_logging() as log:
        plot_alignment(info,
                       subject='fsaverage',
                       surfaces=(),
                       verbose=True,
                       fnirs='channels')
    log = log.getvalue()
    assert '26 fnirs locations' in log

    with catch_logging() as log:
        plot_alignment(info,
                       subject='fsaverage',
                       surfaces=(),
                       verbose=True,
                       fnirs='pairs')
    log = log.getvalue()
    assert '26 fnirs pairs' in log

    with catch_logging() as log:
        plot_alignment(info,
                       subject='fsaverage',
                       surfaces=(),
                       verbose=True,
                       fnirs='sources')
    log = log.getvalue()
    assert '26 fnirs sources' in log

    with catch_logging() as log:
        plot_alignment(info,
                       subject='fsaverage',
                       surfaces=(),
                       verbose=True,
                       fnirs='detectors')
    log = log.getvalue()
    assert '26 fnirs detectors' in log

    with catch_logging() as log:
        plot_alignment(info,
                       subject='fsaverage',
                       surfaces=(),
                       verbose=True,
                       fnirs=['channels', 'pairs'])
    log = log.getvalue()
    assert '26 fnirs pairs' in log
    assert '26 fnirs locations' in log

    with catch_logging() as log:
        plot_alignment(info,
                       subject='fsaverage',
                       surfaces=(),
                       verbose=True,
                       fnirs=['pairs', 'sources', 'detectors'])
    log = log.getvalue()
    assert '26 fnirs pairs' in log
    assert '26 fnirs sources' in log
    assert '26 fnirs detectors' in log

    with catch_logging() as log:
        plot_alignment(info,
                       subject='fsaverage',
                       surfaces=(),
                       verbose=True,
                       fnirs=['channels', 'pairs', 'sources', 'detectors'])
    log = log.getvalue()
    assert '26 fnirs pairs' in log
    assert '26 fnirs locations' in log
    assert '26 fnirs sources' in log
    assert '26 fnirs detectors' in log

    renderer.backend._close_all()
示例#38
0
def test_make_forward_solution_sphere(tmpdir):
    """Test making a forward solution with a sphere model."""
    fname_src_small = tmpdir.join('sample-oct-2-src.fif')
    src = setup_source_space('sample',
                             'oct2',
                             subjects_dir=subjects_dir,
                             add_dist=False)
    write_source_spaces(fname_src_small, src)  # to enable working with MNE-C
    out_name = tmpdir.join('tmp-fwd.fif')
    run_subprocess([
        'mne_forward_solution', '--meg', '--eeg', '--meas', fname_raw, '--src',
        fname_src_small, '--mri', fname_trans, '--fwd', out_name
    ])
    fwd = read_forward_solution(out_name)
    sphere = make_sphere_model(verbose=True)
    fwd_py = make_forward_solution(fname_raw,
                                   fname_trans,
                                   src,
                                   sphere,
                                   meg=True,
                                   eeg=True,
                                   verbose=True)
    _compare_forwards(fwd,
                      fwd_py,
                      366,
                      108,
                      meg_rtol=5e-1,
                      meg_atol=1e-6,
                      eeg_rtol=5e-1,
                      eeg_atol=5e-1)
    # Since the above is pretty lax, let's check a different way
    for meg, eeg in zip([True, False], [False, True]):
        fwd_ = pick_types_forward(fwd, meg=meg, eeg=eeg)
        fwd_py_ = pick_types_forward(fwd, meg=meg, eeg=eeg)
        assert_allclose(np.corrcoef(fwd_['sol']['data'].ravel(),
                                    fwd_py_['sol']['data'].ravel())[0, 1],
                        1.0,
                        rtol=1e-3)
    # Number of layers in the sphere model doesn't matter for MEG
    # (as long as no sources are omitted due to distance)
    assert len(sphere['layers']) == 4
    fwd = make_forward_solution(fname_raw,
                                fname_trans,
                                src,
                                sphere,
                                meg=True,
                                eeg=False)
    sphere_1 = make_sphere_model(head_radius=None)
    assert len(sphere_1['layers']) == 0
    assert_array_equal(sphere['r0'], sphere_1['r0'])
    fwd_1 = make_forward_solution(fname_raw,
                                  fname_trans,
                                  src,
                                  sphere,
                                  meg=True,
                                  eeg=False)
    _compare_forwards(fwd, fwd_1, 306, 108, meg_rtol=1e-12, meg_atol=1e-12)
    # Homogeneous model
    sphere = make_sphere_model(head_radius=None)
    with pytest.raises(RuntimeError, match='zero shells.*EEG'):
        make_forward_solution(fname_raw, fname_trans, src, sphere)
示例#39
0
def get_data(base_path,
             dipole_idx,
             dipole_amplitude,
             use_maxwell_filter,
             bads=[],
             show=False):
    if "phantom_aston" in base_path:
        if use_maxwell_filter is True:
            data_path = base_path + '/tSSS Data'
            # data_path += '/Amp%d_IASoff_movement/' % dipole_amplitude
            data_path = data_path + '/Amp%d_IASoff_tSSS/' % dipole_amplitude
            fname = 'Amp%d_Dip%d_IASoff_tsss.fif' % (dipole_amplitude,
                                                     dipole_idx)
        else:
            data_path = base_path + '/Raw Data'
            data_path = data_path + '/Amp%d_IASoff/' % dipole_amplitude
            fname = 'Amp%d_Dip%d_IASoff.fif' % (dipole_amplitude, dipole_idx)
        stim_channel = 'SYS201'
    else:
        data_path = base_path + '/%dnAm/' % dipole_amplitude
        if use_maxwell_filter is True:
            fname = 'dip%02d_%dnAm_sss.fif' % (dipole_idx, dipole_amplitude)
        else:
            fname = 'dip%02d_%dnAm.fif' % (dipole_idx, dipole_amplitude)
        stim_channel = 'STI201'

    raw_fname = op.join(data_path, fname)
    raw = mne.io.read_raw_fif(raw_fname, preload=True, verbose='error')
    if use_maxwell_filter is not True:  # ie 'mne' or False
        raw.info['bads'] = bads

    if "phantom_aston" in base_path:
        raw.crop(20, None)

    events = mne.find_events(raw, stim_channel=stim_channel)

    if show:
        raw.plot(events=events)
    if show:
        raw.plot_psd(tmax=np.inf, fmax=60, average=False)

    raw.fix_mag_coil_types()
    if use_maxwell_filter == 'mne':
        # Use Maxwell filtering from MNE
        raw = mne.preprocessing.maxwell_filter(raw, origin=(0., 0., 0.))
        if show:
            raw.plot(events=events)

    #######################################################################
    # We know our phantom produces sinusoidal bursts below 25 Hz, so let's
    # filter.
    raw.filter(None,
               40.,
               h_trans_bandwidth='auto',
               filter_length='auto',
               phase='zero')
    if show:
        raw.plot(events=events)

    #######################################################################
    # Now we epoch our data, average it
    tmin, tmax = -0.5, 0.5
    event_id = events[0, 2]
    # reject = dict(grad=4000e-13, mag=4e-12)
    reject = None
    epochs = mne.Epochs(raw,
                        events,
                        event_id,
                        tmin,
                        tmax,
                        baseline=(None, -0.05),
                        preload=True,
                        reject=reject)
    evoked = epochs.average()

    if show:
        evoked.plot(spatial_colors=True)
    if show:
        evoked.plot_joint()

    evoked.crop(0, None)
    sphere = mne.make_sphere_model(r0=(0., 0., 0.), head_radius=0.08)
    cov = mne.compute_covariance(epochs, tmax=-0.05)
    print(fname + " nave=%d" % evoked.nave, end='')
    return epochs, evoked, cov, sphere
示例#40
0
def test_simulate_calculate_chpi_positions():
    """Test calculation of cHPI positions with simulated data."""
    # Read info dict from raw FIF file
    info = read_info(raw_fname)
    # Tune the info structure
    chpi_channel = u'STI201'
    ncoil = len(info['hpi_results'][0]['order'])
    coil_freq = 10 + np.arange(ncoil) * 5
    hpi_subsystem = {
        'event_channel':
        chpi_channel,
        'hpi_coils': [{
            'event_bits':
            np.array([256, 0, 256, 256], dtype=np.int32)
        }, {
            'event_bits':
            np.array([512, 0, 512, 512], dtype=np.int32)
        }, {
            'event_bits':
            np.array([1024, 0, 1024, 1024], dtype=np.int32)
        }, {
            'event_bits':
            np.array([2048, 0, 2048, 2048], dtype=np.int32)
        }],
        'ncoil':
        ncoil
    }

    info['hpi_subsystem'] = hpi_subsystem
    for l, freq in enumerate(coil_freq):
        info['hpi_meas'][0]['hpi_coils'][l]['coil_freq'] = freq
    picks = pick_types(info, meg=True, stim=True, eeg=False, exclude=[])
    info['sfreq'] = 100.  # this will speed it up a lot
    info = pick_info(info, picks)
    info['chs'][info['ch_names'].index('STI 001')]['ch_name'] = 'STI201'
    info._update_redundant()
    info['projs'] = []

    info_trans = info['dev_head_t']['trans'].copy()

    dev_head_pos_ini = np.concatenate(
        [rot_to_quat(info_trans[:3, :3]), info_trans[:3, 3]])
    ez = np.array([0, 0, 1])  # Unit vector in z-direction of head coordinates

    # Define some constants
    duration = 30  # Time / s

    # Quotient of head position sampling frequency
    # and raw sampling frequency
    head_pos_sfreq_quotient = 0.1

    # Round number of head positions to the next integer
    S = int(duration / (info['sfreq'] * head_pos_sfreq_quotient))
    dz = 0.001  # Shift in z-direction is 0.1mm for each step

    dev_head_pos = np.zeros((S, 10))
    dev_head_pos[:, 0] = np.arange(S) * info['sfreq'] * head_pos_sfreq_quotient
    dev_head_pos[:, 1:4] = dev_head_pos_ini[:3]
    dev_head_pos[:, 4:7] = dev_head_pos_ini[3:] + \
        np.outer(np.arange(S) * dz, ez)
    dev_head_pos[:, 7] = 1.0

    # cm/s
    dev_head_pos[:, 9] = 100 * dz / (info['sfreq'] * head_pos_sfreq_quotient)

    # Round number of samples to the next integer
    raw_data = np.zeros((len(picks), int(duration * info['sfreq'] + 0.5)))
    raw = RawArray(raw_data, info)

    dip = Dipole(np.array([0.0, 0.1, 0.2]),
                 np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]),
                 np.array([1e-9, 1e-9, 1e-9]),
                 np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]),
                 np.array([1.0, 1.0, 1.0]), 'dip')
    sphere = make_sphere_model('auto',
                               'auto',
                               info=info,
                               relative_radii=(1.0, 0.9),
                               sigmas=(0.33, 0.3))
    fwd, stc = make_forward_dipole(dip, sphere, info)
    stc.resample(info['sfreq'])
    raw = simulate_raw(raw,
                       stc,
                       None,
                       fwd['src'],
                       sphere,
                       cov=None,
                       blink=False,
                       ecg=False,
                       chpi=True,
                       head_pos=dev_head_pos,
                       mindist=1.0,
                       interp='zero',
                       verbose=None,
                       use_cps=True)

    quats = _calculate_chpi_positions(
        raw,
        t_step_min=raw.info['sfreq'] * head_pos_sfreq_quotient,
        t_step_max=raw.info['sfreq'] * head_pos_sfreq_quotient,
        t_window=1.0)
    _assert_quats(quats, dev_head_pos, dist_tol=0.001, angle_tol=1.)
    # make room for title
    fig.subplots_adjust(top=0.9)
    fig.suptitle('{} reference'.format(title), size='xx-large', weight='bold')

###############################################################################
# Using an infinite reference (REST)
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# To use the "point at infinity" reference technique described in
# :footcite:`Yao2001` requires a forward model, which we can create in a few
# steps. Here we use a fairly large spacing of vertices (``pos`` = 15 mm) to
# reduce computation time; a 5 mm spacing is more typical for real data
# analysis:

raw.del_proj()  # remove our average reference projector first
sphere = mne.make_sphere_model('auto', 'auto', raw.info)
src = mne.setup_volume_source_space(sphere=sphere, exclude=30., pos=15.)
forward = mne.make_forward_solution(raw.info, trans=None, src=src, bem=sphere)
raw_rest = raw.copy().set_eeg_reference('REST', forward=forward)

for title, _raw in zip(['Original', 'REST (∞)'], [raw, raw_rest]):
    fig = _raw.plot(n_channels=len(raw), scalings=dict(eeg=5e-5))
    # make room for title
    fig.subplots_adjust(top=0.9)
    fig.suptitle('{} reference'.format(title), size='xx-large', weight='bold')

###############################################################################
# EEG reference and source modeling
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
#
# If you plan to perform source modeling (either with EEG or combined EEG/MEG
示例#42
0
def test_mxne_vol_sphere():
    """Test (TF-)MxNE with a sphere forward and volumic source space."""
    evoked = read_evokeds(fname_data, condition=0, baseline=(None, 0))
    evoked.crop(tmin=-0.05, tmax=0.2)
    cov = read_cov(fname_cov)

    evoked_l21 = evoked.copy()
    evoked_l21.crop(tmin=0.081, tmax=0.1)

    info = evoked.info
    sphere = mne.make_sphere_model(r0=(0., 0., 0.), head_radius=0.080)
    src = mne.setup_volume_source_space(subject=None, pos=15., mri=None,
                                        sphere=(0.0, 0.0, 0.0, 0.08),
                                        bem=None, mindist=5.0,
                                        exclude=2.0, sphere_units='m')
    fwd = mne.make_forward_solution(info, trans=None, src=src,
                                    bem=sphere, eeg=False, meg=True)

    alpha = 80.
    pytest.raises(ValueError, mixed_norm, evoked, fwd, cov, alpha,
                  loose=0.0, return_residual=False,
                  maxit=3, tol=1e-8, active_set_size=10)

    pytest.raises(ValueError, mixed_norm, evoked, fwd, cov, alpha,
                  loose=0.2, return_residual=False,
                  maxit=3, tol=1e-8, active_set_size=10)

    # irMxNE tests
    with catch_logging() as log:
        stc = mixed_norm(evoked_l21, fwd, cov, alpha,
                         n_mxne_iter=1, maxit=30, tol=1e-8,
                         active_set_size=10, verbose=True)
    assert isinstance(stc, VolSourceEstimate)
    assert_array_almost_equal(stc.times, evoked_l21.times, 5)
    assert_var_exp_log(log.getvalue(), 9, 11)  # 10.2

    # Compare orientation obtained using fit_dipole and gamma_map
    # for a simulated evoked containing a single dipole
    stc = mne.VolSourceEstimate(50e-9 * np.random.RandomState(42).randn(1, 4),
                                vertices=[stc.vertices[0][:1]],
                                tmin=stc.tmin,
                                tstep=stc.tstep)
    evoked_dip = mne.simulation.simulate_evoked(fwd, stc, info, cov, nave=1e9,
                                                use_cps=True)

    dip_mxne = mixed_norm(evoked_dip, fwd, cov, alpha=80,
                          n_mxne_iter=1, maxit=30, tol=1e-8,
                          active_set_size=10, return_as_dipoles=True)

    amp_max = [np.max(d.amplitude) for d in dip_mxne]
    dip_mxne = dip_mxne[np.argmax(amp_max)]
    assert dip_mxne.pos[0] in src[0]['rr'][stc.vertices[0]]

    dip_fit = mne.fit_dipole(evoked_dip, cov, sphere)[0]
    assert np.abs(np.dot(dip_fit.ori[0], dip_mxne.ori[0])) > 0.99
    dist = 1000 * np.linalg.norm(dip_fit.pos[0] - dip_mxne.pos[0])
    assert dist < 4.  # within 4 mm

    # Do with TF-MxNE for test memory savings
    alpha = 60.  # overall regularization parameter
    l1_ratio = 0.01  # temporal regularization proportion

    stc, _ = tf_mixed_norm(evoked, fwd, cov, maxit=3, tol=1e-4,
                           tstep=16, wsize=32, window=0.1, alpha=alpha,
                           l1_ratio=l1_ratio, return_residual=True)
    assert isinstance(stc, VolSourceEstimate)
    assert_array_almost_equal(stc.times, evoked.times, 5)
示例#43
0
def test_make_lcmv(tmpdir, reg, proj):
    """Test LCMV with evoked data and single trials."""
    raw, epochs, evoked, data_cov, noise_cov, label, forward,\
        forward_surf_ori, forward_fixed, forward_vol = _get_data(proj=proj)

    for fwd in [forward, forward_vol]:
        filters = make_lcmv(evoked.info, fwd, data_cov, reg=reg,
                            noise_cov=noise_cov)
        stc = apply_lcmv(evoked, filters, max_ori_out='signed')
        stc.crop(0.02, None)

        stc_pow = np.sum(np.abs(stc.data), axis=1)
        idx = np.argmax(stc_pow)
        max_stc = stc.data[idx]
        tmax = stc.times[np.argmax(max_stc)]

        assert 0.09 < tmax < 0.12, tmax
        assert 0.9 < np.max(max_stc) < 3., np.max(max_stc)

        if fwd is forward:
            # Test picking normal orientation (surface source space only).
            filters = make_lcmv(evoked.info, forward_surf_ori, data_cov,
                                reg=reg, noise_cov=noise_cov,
                                pick_ori='normal', weight_norm=None)
            stc_normal = apply_lcmv(evoked, filters, max_ori_out='signed')
            stc_normal.crop(0.02, None)

            stc_pow = np.sum(np.abs(stc_normal.data), axis=1)
            idx = np.argmax(stc_pow)
            max_stc = stc_normal.data[idx]
            tmax = stc_normal.times[np.argmax(max_stc)]

            lower = 0.04 if proj else 0.025
            assert lower < tmax < 0.13, tmax
            lower = 3e-7 if proj else 2e-7
            assert lower < np.max(max_stc) < 5e-7, np.max(max_stc)

            # No weight normalization was applied, so the amplitude of normal
            # orientation results should always be smaller than free
            # orientation results.
            assert (np.abs(stc_normal.data) <= stc.data).all()

        # Test picking source orientation maximizing output source power
        filters = make_lcmv(evoked.info, fwd, data_cov, reg=reg,
                            noise_cov=noise_cov, pick_ori='max-power')
        stc_max_power = apply_lcmv(evoked, filters, max_ori_out='signed')
        stc_max_power.crop(0.02, None)
        stc_pow = np.sum(np.abs(stc_max_power.data), axis=1)
        idx = np.argmax(stc_pow)
        max_stc = np.abs(stc_max_power.data[idx])
        tmax = stc.times[np.argmax(max_stc)]

        lower = 0.08 if proj else 0.04
        assert lower < tmax < 0.12, tmax
        assert 0.8 < np.max(max_stc) < 3., np.max(max_stc)

        stc_max_power.data[:, :] = np.abs(stc_max_power.data)

        if fwd is forward:
            # Maximum output source power orientation results should be
            # similar to free orientation results in areas with channel
            # coverage
            label = mne.read_label(fname_label)
            mean_stc = stc.extract_label_time_course(label, fwd['src'],
                                                     mode='mean')
            mean_stc_max_pow = \
                stc_max_power.extract_label_time_course(label, fwd['src'],
                                                        mode='mean')
            assert_array_less(np.abs(mean_stc - mean_stc_max_pow), 0.6)

        # Test NAI weight normalization:
        filters = make_lcmv(evoked.info, fwd, data_cov, reg=reg,
                            noise_cov=noise_cov, pick_ori='max-power',
                            weight_norm='nai')
        stc_nai = apply_lcmv(evoked, filters, max_ori_out='signed')
        stc_nai.crop(0.02, None)

        # Test whether unit-noise-gain solution is a scaled version of NAI
        pearsoncorr = np.corrcoef(np.concatenate(np.abs(stc_nai.data)),
                                  np.concatenate(stc_max_power.data))
        assert_almost_equal(pearsoncorr[0, 1], 1.)

    # Test sphere head model with unit-noise gain beamformer and orientation
    # selection and rank reduction of the leadfield
    sphere = mne.make_sphere_model(r0=(0., 0., 0.), head_radius=0.080)
    src = mne.setup_volume_source_space(subject=None, pos=15., mri=None,
                                        sphere=(0.0, 0.0, 0.0, 80.0),
                                        bem=None, mindist=5.0, exclude=2.0)

    fwd_sphere = mne.make_forward_solution(evoked.info, trans=None, src=src,
                                           bem=sphere, eeg=False, meg=True)

    # Test that we get an error if not reducing rank
    with pytest.raises(ValueError):  # Singular matrix or complex spectrum
        make_lcmv(
            evoked.info, fwd_sphere, data_cov, reg=0.1,
            noise_cov=noise_cov, weight_norm='unit-noise-gain',
            pick_ori='max-power', reduce_rank=False, rank='full')

    # Now let's reduce it
    filters = make_lcmv(evoked.info, fwd_sphere, data_cov, reg=0.1,
                        noise_cov=noise_cov, weight_norm='unit-noise-gain',
                        pick_ori='max-power', reduce_rank=True)
    stc_sphere = apply_lcmv(evoked, filters, max_ori_out='signed')
    stc_sphere = np.abs(stc_sphere)
    stc_sphere.crop(0.02, None)

    stc_pow = np.sum(stc_sphere.data, axis=1)
    idx = np.argmax(stc_pow)
    max_stc = stc_sphere.data[idx]
    tmax = stc_sphere.times[np.argmax(max_stc)]

    lower = 0.08 if proj else 0.04
    assert lower < tmax < 0.15, tmax
    assert 0.4 < np.max(max_stc) < 2., np.max(max_stc)

    # Test if spatial filter contains src_type
    assert 'src_type' in filters

    # __repr__
    assert len(evoked.ch_names) == 22
    assert len(evoked.info['projs']) == (4 if proj else 0)
    assert len(evoked.info['bads']) == 2
    rank = 17 if proj else 20
    assert 'LCMV' in repr(filters)
    assert 'unknown subject' not in repr(filters)
    assert '484' in repr(filters)
    assert '20' in repr(filters)
    assert 'rank %s' % rank in repr(filters)

    # I/O
    fname = op.join(str(tmpdir), 'filters.h5')
    with pytest.warns(RuntimeWarning, match='-lcmv.h5'):
        filters.save(fname)
    filters_read = read_beamformer(fname)
    assert isinstance(filters, Beamformer)
    assert isinstance(filters_read, Beamformer)
    # deal with object_diff strictness
    filters_read['rank'] = int(filters_read['rank'])
    filters['rank'] = int(filters['rank'])
    assert object_diff(filters, filters_read) == ''

    # Test if fixed forward operator is detected when picking normal or
    # max-power orientation
    pytest.raises(ValueError, make_lcmv, evoked.info, forward_fixed, data_cov,
                  reg=0.01, noise_cov=noise_cov, pick_ori='normal')
    pytest.raises(ValueError, make_lcmv, evoked.info, forward_fixed, data_cov,
                  reg=0.01, noise_cov=noise_cov, pick_ori='max-power')

    # Test if non-surface oriented forward operator is detected when picking
    # normal orientation
    pytest.raises(ValueError, make_lcmv, evoked.info, forward, data_cov,
                  reg=0.01, noise_cov=noise_cov, pick_ori='normal')

    # Test if volume forward operator is detected when picking normal
    # orientation
    pytest.raises(ValueError, make_lcmv, evoked.info, forward_vol, data_cov,
                  reg=0.01, noise_cov=noise_cov, pick_ori='normal')

    # Test if missing of noise covariance matrix is detected when more than
    # one channel type is present in the data
    pytest.raises(ValueError, make_lcmv, evoked.info, forward_vol,
                  data_cov=data_cov, reg=0.01, noise_cov=None,
                  pick_ori='max-power')

    # Test if wrong channel selection is detected in application of filter
    evoked_ch = deepcopy(evoked)
    evoked_ch.pick_channels(evoked_ch.ch_names[1:])
    filters = make_lcmv(evoked.info, forward_vol, data_cov, reg=0.01,
                        noise_cov=noise_cov)
    pytest.raises(ValueError, apply_lcmv, evoked_ch, filters,
                  max_ori_out='signed')

    # Test if discrepancies in channel selection of data and fwd model are
    # handled correctly in apply_lcmv
    # make filter with data where first channel was removed
    filters = make_lcmv(evoked_ch.info, forward_vol, data_cov, reg=0.01,
                        noise_cov=noise_cov)
    # applying that filter to the full data set should automatically exclude
    # this channel from the data
    # also test here that no warnings are thrown - implemented to check whether
    # src should not be None warning occurs
    with pytest.warns(None) as w:
        stc = apply_lcmv(evoked, filters, max_ori_out='signed')
    assert len(w) == 0
    # the result should be equal to applying this filter to a dataset without
    # this channel:
    stc_ch = apply_lcmv(evoked_ch, filters, max_ori_out='signed')
    assert_array_almost_equal(stc.data, stc_ch.data)

    # Test if non-matching SSP projection is detected in application of filter
    if proj:
        raw_proj = deepcopy(raw)
        raw_proj.del_proj()
        with pytest.raises(ValueError, match='do not match the projections'):
            apply_lcmv_raw(raw_proj, filters, max_ori_out='signed')

    # Test if setting reduce_rank to True returns a NotImplementedError
    # when no orientation selection is done or pick_ori='normal'
    pytest.raises(NotImplementedError, make_lcmv, evoked.info, forward_vol,
                  data_cov, noise_cov=noise_cov, pick_ori=None,
                  weight_norm='nai', reduce_rank=True)
    pytest.raises(NotImplementedError, make_lcmv, evoked.info,
                  forward_surf_ori, data_cov, noise_cov=noise_cov,
                  pick_ori='normal', weight_norm='nai', reduce_rank=True)

    # Test if spatial filter contains src_type
    assert 'src_type' in filters

    # check whether a filters object without src_type throws expected warning
    del filters['src_type']  # emulate 0.16 behaviour to cause warning
    with pytest.warns(RuntimeWarning, match='spatial filter does not contain '
                      'src_type'):
        apply_lcmv(evoked, filters, max_ori_out='signed')

    # Now test single trial using fixed orientation forward solution
    # so we can compare it to the evoked solution
    filters = make_lcmv(epochs.info, forward_fixed, data_cov, reg=0.01,
                        noise_cov=noise_cov)
    stcs = apply_lcmv_epochs(epochs, filters, max_ori_out='signed')
    stcs_ = apply_lcmv_epochs(epochs, filters, return_generator=True,
                              max_ori_out='signed')
    assert_array_equal(stcs[0].data, next(stcs_).data)

    epochs.drop_bad()
    assert (len(epochs.events) == len(stcs))

    # average the single trial estimates
    stc_avg = np.zeros_like(stcs[0].data)
    for this_stc in stcs:
        stc_avg += this_stc.data
    stc_avg /= len(stcs)

    # compare it to the solution using evoked with fixed orientation
    filters = make_lcmv(evoked.info, forward_fixed, data_cov, reg=0.01,
                        noise_cov=noise_cov)
    stc_fixed = apply_lcmv(evoked, filters, max_ori_out='signed')
    assert_array_almost_equal(stc_avg, stc_fixed.data)

    # use a label so we have few source vertices and delayed computation is
    # not used
    filters = make_lcmv(epochs.info, forward_fixed, data_cov, reg=0.01,
                        noise_cov=noise_cov, label=label)
    stcs_label = apply_lcmv_epochs(epochs, filters, max_ori_out='signed')

    assert_array_almost_equal(stcs_label[0].data, stcs[0].in_label(label).data)

    # Test condition where the filters weights are zero. There should not be
    # any divide-by-zero errors
    zero_cov = data_cov.copy()
    zero_cov['data'][:] = 0
    filters = make_lcmv(epochs.info, forward_fixed, zero_cov, reg=0.01,
                        noise_cov=noise_cov)
    assert_array_equal(filters['weights'], 0)
示例#44
0
def test_lcmv():
    """Test LCMV with evoked data and single trials."""
    raw, epochs, evoked, data_cov, noise_cov, label, forward,\
        forward_surf_ori, forward_fixed, forward_vol = _get_data()

    for fwd in [forward, forward_vol]:
        filters = make_lcmv(evoked.info,
                            fwd,
                            data_cov,
                            reg=0.01,
                            noise_cov=noise_cov)
        stc = apply_lcmv(evoked, filters, max_ori_out='signed')
        stc.crop(0.02, None)

        stc_pow = np.sum(np.abs(stc.data), axis=1)
        idx = np.argmax(stc_pow)
        max_stc = stc.data[idx]
        tmax = stc.times[np.argmax(max_stc)]

        assert_true(0.09 < tmax < 0.105, tmax)
        assert_true(0.9 < np.max(max_stc) < 3., np.max(max_stc))

        if fwd is forward:
            # Test picking normal orientation (surface source space only)
            filters = make_lcmv(evoked.info,
                                forward_surf_ori,
                                data_cov,
                                reg=0.01,
                                noise_cov=noise_cov,
                                pick_ori='normal')
            stc_normal = apply_lcmv(evoked, filters, max_ori_out='signed')
            stc_normal.crop(0.02, None)

            stc_pow = np.sum(np.abs(stc_normal.data), axis=1)
            idx = np.argmax(stc_pow)
            max_stc = stc_normal.data[idx]
            tmax = stc_normal.times[np.argmax(max_stc)]

            assert_true(0.04 < tmax < 0.11, tmax)
            assert_true(0.4 < np.max(max_stc) < 2., np.max(max_stc))

            # The amplitude of normal orientation results should always be
            # smaller than free orientation results
            assert_true((np.abs(stc_normal.data) <= stc.data).all())

        # Test picking source orientation maximizing output source power
        filters = make_lcmv(evoked.info,
                            fwd,
                            data_cov,
                            reg=0.01,
                            noise_cov=noise_cov,
                            pick_ori='max-power')
        stc_max_power = apply_lcmv(evoked, filters, max_ori_out='signed')
        stc_max_power.crop(0.02, None)
        stc_pow = np.sum(np.abs(stc_max_power.data), axis=1)
        idx = np.argmax(stc_pow)
        max_stc = np.abs(stc_max_power.data[idx])
        tmax = stc.times[np.argmax(max_stc)]

        assert_true(0.08 < tmax < 0.11, tmax)
        assert_true(0.8 < np.max(max_stc) < 3., np.max(max_stc))

        stc_max_power.data[:, :] = np.abs(stc_max_power.data)

        if fwd is forward:
            # Maximum output source power orientation results should be
            # similar to free orientation results in areas with channel
            # coverage
            label = mne.read_label(fname_label)
            mean_stc = stc.extract_label_time_course(label,
                                                     fwd['src'],
                                                     mode='mean')
            mean_stc_max_pow = \
                stc_max_power.extract_label_time_course(label, fwd['src'],
                                                        mode='mean')
            assert_true((np.abs(mean_stc - mean_stc_max_pow) < 0.5).all())

        # Test NAI weight normalization:
        filters = make_lcmv(evoked.info,
                            fwd,
                            data_cov,
                            reg=0.01,
                            noise_cov=noise_cov,
                            pick_ori='max-power',
                            weight_norm='nai')
        stc_nai = apply_lcmv(evoked, filters, max_ori_out='signed')
        stc_nai.crop(0.02, None)

        # Test whether unit-noise-gain solution is a scaled version of NAI
        pearsoncorr = np.corrcoef(np.concatenate(np.abs(stc_nai.data)),
                                  np.concatenate(stc_max_power.data))
        assert_almost_equal(pearsoncorr[0, 1], 1.)

    # Test sphere head model with unit-noise gain beamformer and orientation
    # selection and rank reduction of the leadfield
    sphere = mne.make_sphere_model(r0=(0., 0., 0.), head_radius=0.080)
    src = mne.setup_volume_source_space(subject=None,
                                        pos=15.,
                                        mri=None,
                                        sphere=(0.0, 0.0, 0.0, 80.0),
                                        bem=None,
                                        mindist=5.0,
                                        exclude=2.0)

    fwd_sphere = mne.make_forward_solution(evoked.info,
                                           trans=None,
                                           src=src,
                                           bem=sphere,
                                           eeg=False,
                                           meg=True)

    # Test that we get an error if not reducing rank
    assert_raises(ValueError,
                  make_lcmv,
                  evoked.info,
                  fwd_sphere,
                  data_cov,
                  reg=0.1,
                  noise_cov=noise_cov,
                  weight_norm='unit-noise-gain',
                  pick_ori='max-power',
                  reduce_rank=False)

    # Now let's reduce it
    filters = make_lcmv(evoked.info,
                        fwd_sphere,
                        data_cov,
                        reg=0.1,
                        noise_cov=noise_cov,
                        weight_norm='unit-noise-gain',
                        pick_ori='max-power',
                        reduce_rank=True)
    stc_sphere = apply_lcmv(evoked, filters, max_ori_out='signed')
    stc_sphere = np.abs(stc_sphere)
    stc_sphere.crop(0.02, None)

    stc_pow = np.sum(stc_sphere.data, axis=1)
    idx = np.argmax(stc_pow)
    max_stc = stc_sphere.data[idx]
    tmax = stc_sphere.times[np.argmax(max_stc)]

    assert_true(0.08 < tmax < 0.11, tmax)
    assert_true(0.4 < np.max(max_stc) < 2., np.max(max_stc))

    # Test if fixed forward operator is detected when picking normal or
    # max-power orientation
    assert_raises(ValueError,
                  make_lcmv,
                  evoked.info,
                  forward_fixed,
                  data_cov,
                  reg=0.01,
                  noise_cov=noise_cov,
                  pick_ori='normal')
    assert_raises(ValueError,
                  make_lcmv,
                  evoked.info,
                  forward_fixed,
                  data_cov,
                  reg=0.01,
                  noise_cov=noise_cov,
                  pick_ori='max-power')

    # Test if non-surface oriented forward operator is detected when picking
    # normal orientation
    assert_raises(ValueError,
                  make_lcmv,
                  evoked.info,
                  forward,
                  data_cov,
                  reg=0.01,
                  noise_cov=noise_cov,
                  pick_ori='normal')

    # Test if volume forward operator is detected when picking normal
    # orientation
    assert_raises(ValueError,
                  make_lcmv,
                  evoked.info,
                  forward_vol,
                  data_cov,
                  reg=0.01,
                  noise_cov=noise_cov,
                  pick_ori='normal')

    # Test if missing of noise covariance matrix is detected when more than
    # one channel type is present in the data
    assert_raises(ValueError,
                  make_lcmv,
                  evoked.info,
                  forward_vol,
                  data_cov=data_cov,
                  reg=0.01,
                  noise_cov=None,
                  pick_ori='max-power')

    # Test if not-yet-implemented orientation selections raise error with
    # neural activity index
    assert_raises(NotImplementedError,
                  make_lcmv,
                  evoked.info,
                  forward_surf_ori,
                  data_cov,
                  reg=0.01,
                  noise_cov=noise_cov,
                  pick_ori='normal',
                  weight_norm='nai')
    assert_raises(NotImplementedError,
                  make_lcmv,
                  evoked.info,
                  forward_vol,
                  data_cov,
                  reg=0.01,
                  noise_cov=noise_cov,
                  pick_ori=None,
                  weight_norm='nai')

    # Test if no weight-normalization and max-power source orientation throws
    # an error
    assert_raises(NotImplementedError,
                  make_lcmv,
                  evoked.info,
                  forward_vol,
                  data_cov,
                  reg=0.01,
                  noise_cov=noise_cov,
                  pick_ori='max-power',
                  weight_norm=None)

    # Test if wrong channel selection is detected in application of filter
    evoked_ch = deepcopy(evoked)
    evoked_ch.pick_channels(evoked_ch.ch_names[1:])
    filters = make_lcmv(evoked.info,
                        forward_vol,
                        data_cov,
                        reg=0.01,
                        noise_cov=noise_cov)
    assert_raises(ValueError,
                  apply_lcmv,
                  evoked_ch,
                  filters,
                  max_ori_out='signed')

    # Test if discrepancies in channel selection of data and fwd model are
    # handled correctly in apply_lcmv
    # make filter with data where first channel was removed
    filters = make_lcmv(evoked_ch.info,
                        forward_vol,
                        data_cov,
                        reg=0.01,
                        noise_cov=noise_cov)
    # applying that filter to the full data set should automatically exclude
    # this channel from the data
    stc = apply_lcmv(evoked, filters, max_ori_out='signed')
    # the result should be equal to applying this filter to a dataset without
    # this channel:
    stc_ch = apply_lcmv(evoked_ch, filters, max_ori_out='signed')
    assert_array_almost_equal(stc.data, stc_ch.data)

    # Test if non-matching SSP projection is detected in application of filter
    raw_proj = deepcopy(raw)
    raw_proj.del_proj()
    assert_raises(ValueError,
                  apply_lcmv_raw,
                  raw_proj,
                  filters,
                  max_ori_out='signed')

    # Test if setting reduce_rank to True returns a NotImplementedError
    # when no orientation selection is done or pick_ori='normal'
    assert_raises(NotImplementedError,
                  make_lcmv,
                  evoked.info,
                  forward_vol,
                  data_cov,
                  noise_cov=noise_cov,
                  pick_ori=None,
                  weight_norm='nai',
                  reduce_rank=True)
    assert_raises(NotImplementedError,
                  make_lcmv,
                  evoked.info,
                  forward_surf_ori,
                  data_cov,
                  noise_cov=noise_cov,
                  pick_ori='normal',
                  weight_norm='nai',
                  reduce_rank=True)

    # Now test single trial using fixed orientation forward solution
    # so we can compare it to the evoked solution
    filters = make_lcmv(epochs.info,
                        forward_fixed,
                        data_cov,
                        reg=0.01,
                        noise_cov=noise_cov)
    stcs = apply_lcmv_epochs(epochs, filters, max_ori_out='signed')
    stcs_ = apply_lcmv_epochs(epochs,
                              filters,
                              return_generator=True,
                              max_ori_out='signed')
    assert_array_equal(stcs[0].data, advance_iterator(stcs_).data)

    epochs.drop_bad()
    assert_true(len(epochs.events) == len(stcs))

    # average the single trial estimates
    stc_avg = np.zeros_like(stcs[0].data)
    for this_stc in stcs:
        stc_avg += this_stc.data
    stc_avg /= len(stcs)

    # compare it to the solution using evoked with fixed orientation
    filters = make_lcmv(evoked.info,
                        forward_fixed,
                        data_cov,
                        reg=0.01,
                        noise_cov=noise_cov)
    stc_fixed = apply_lcmv(evoked, filters, max_ori_out='signed')
    assert_array_almost_equal(stc_avg, stc_fixed.data)

    # use a label so we have few source vertices and delayed computation is
    # not used
    filters = make_lcmv(epochs.info,
                        forward_fixed,
                        data_cov,
                        reg=0.01,
                        noise_cov=noise_cov,
                        label=label)
    stcs_label = apply_lcmv_epochs(epochs, filters, max_ori_out='signed')

    assert_array_almost_equal(stcs_label[0].data, stcs[0].in_label(label).data)
示例#45
0
def test_dipole_fitting():
    """Test dipole fitting"""
    amp = 10e-9
    tempdir = _TempDir()
    rng = np.random.RandomState(0)
    fname_dtemp = op.join(tempdir, 'test.dip')
    fname_sim = op.join(tempdir, 'test-ave.fif')
    fwd = convert_forward_solution(read_forward_solution(fname_fwd),
                                   surf_ori=False,
                                   force_fixed=True)
    evoked = read_evokeds(fname_evo)[0]
    cov = read_cov(fname_cov)
    n_per_hemi = 5
    vertices = [
        np.sort(rng.permutation(s['vertno'])[:n_per_hemi]) for s in fwd['src']
    ]
    nv = sum(len(v) for v in vertices)
    stc = SourceEstimate(amp * np.eye(nv), vertices, 0, 0.001)
    evoked = simulate_evoked(fwd,
                             stc,
                             evoked.info,
                             cov,
                             snr=20,
                             random_state=rng)
    # For speed, let's use a subset of channels (strange but works)
    picks = np.sort(
        np.concatenate([
            pick_types(evoked.info, meg=True, eeg=False)[::2],
            pick_types(evoked.info, meg=False, eeg=True)[::2]
        ]))
    evoked.pick_channels([evoked.ch_names[p] for p in picks])
    evoked.add_proj(make_eeg_average_ref_proj(evoked.info))
    write_evokeds(fname_sim, evoked)

    # Run MNE-C version
    run_subprocess([
        'mne_dipole_fit',
        '--meas',
        fname_sim,
        '--meg',
        '--eeg',
        '--noise',
        fname_cov,
        '--dip',
        fname_dtemp,
        '--mri',
        fname_fwd,
        '--reg',
        '0',
        '--tmin',
        '0',
    ])
    dip_c = read_dipole(fname_dtemp)

    # Run mne-python version
    sphere = make_sphere_model(head_radius=0.1)
    dip, residuals = fit_dipole(evoked, fname_cov, sphere, fname_fwd)

    # Sanity check: do our residuals have less power than orig data?
    data_rms = np.sqrt(np.sum(evoked.data**2, axis=0))
    resi_rms = np.sqrt(np.sum(residuals**2, axis=0))
    factor = 1.
    # XXX weird, inexplicable differenc for 3.5 build we'll assume is due to
    # Anaconda bug for now...
    if os.getenv('TRAVIS', 'false') == 'true' and \
            sys.version[:3] in ('3.5', '2.7'):
        factor = 0.8
    assert_true((data_rms > factor * resi_rms).all(),
                msg='%s (factor: %s)' % ((data_rms / resi_rms).min(), factor))

    # Compare to original points
    transform_surface_to(fwd['src'][0], 'head', fwd['mri_head_t'])
    transform_surface_to(fwd['src'][1], 'head', fwd['mri_head_t'])
    src_rr = np.concatenate([s['rr'][v] for s, v in zip(fwd['src'], vertices)],
                            axis=0)
    src_nn = np.concatenate([s['nn'][v] for s, v in zip(fwd['src'], vertices)],
                            axis=0)

    # MNE-C skips the last "time" point :(
    dip.crop(dip_c.times[0], dip_c.times[-1])
    src_rr, src_nn = src_rr[:-1], src_nn[:-1]

    # check that we did at least as well
    corrs, dists, gc_dists, amp_errs, gofs = [], [], [], [], []
    for d in (dip_c, dip):
        new = d.pos
        diffs = new - src_rr
        corrs += [np.corrcoef(src_rr.ravel(), new.ravel())[0, 1]]
        dists += [np.sqrt(np.mean(np.sum(diffs * diffs, axis=1)))]
        gc_dists += [
            180 / np.pi * np.mean(np.arccos(np.sum(src_nn * d.ori, axis=1)))
        ]
        amp_errs += [np.sqrt(np.mean((amp - d.amplitude)**2))]
        gofs += [np.mean(d.gof)]
    assert_true(dists[0] >= dists[1] * factor, 'dists: %s' % dists)
    assert_true(corrs[0] <= corrs[1] / factor, 'corrs: %s' % corrs)
    assert_true(gc_dists[0] >= gc_dists[1] * factor,
                'gc-dists (ori): %s' % gc_dists)
    assert_true(amp_errs[0] >= amp_errs[1] * factor,
                'amplitude errors: %s' % amp_errs)
    assert_true(gofs[0] <= gofs[1] / factor, 'gof: %s' % gofs)
 reject  = dict(mag=5000e-15, grad=300000e-15) 
 eventID = dipnum
 epochs  = mne.Epochs(raw, events, eventID, -0.5, 0.5, baseline=(None,0), picks=None, #reject=reject, 
                     preload=True, flat=None, proj=False, decim=1,reject_tmin=None, reject_tmax=None, 
                     detrend= None, on_missing='error', reject_by_annotation=True, verbose=True)
 epochs.drop(badtrial, badreason)
 #%% Find trial variance > index outliers> remove beyond plow and phigh percentile
 plow, phigh = 2.0, 98.0
 bad_trials=my_var_cut_fn(epochs, plow, phigh, to_plot=True)
 print('\n%d trial to remove from total %d trials...\nNo. of remaining trials = %d\n'%(len(bad_trials), 
                                                                                       len(epochs), 
                                                                                       len(epochs)-len(bad_trials)))
 epochs.drop(bad_trials, reason='eye_blink and high variance', verbose=True) 
 
 #%% Compute forward solution/leadfield
 bem=mne.make_sphere_model(r0=(0.0, 0.0, 0.0), head_radius=None, info=None, verbose=True)
 
 if not 'src_vol' in locals():
     src_vol = mne.setup_volume_source_space(subject=subject, pos=5.0, mri=mrifile, bem=None, surface=surffile,
                                          mindist=5.0, exclude=10.0, subjects_dir=subjects_dir, 
                                          volume_label=None, add_interpolator=True, verbose=True)
 if more_plots:
     mne.viz.plot_bem(subject=subject, subjects_dir=subjects_dir, orientation='coronal', slices=range(73,193,5), 
                  brain_surfaces=None, src=src_vol, show=True)
     mne.viz.plot_alignment(epochs.info, trans=transfile, subject=subject, subjects_dir=subjects_dir, fig=None,
                        surfaces=['head-dense', 'inner_skull'], coord_frame='head', show_axes=True,
                        meg=False, eeg='original', dig=True, ecog=True, bem=None, seeg=True,
                        src=src_vol, mri_fiducials=False,  verbose=True) 
 
 if not 'fwd' in locals():
     fwd = mne.make_forward_solution(epochs.info, trans=transfile, src=src_vol, bem=bem, 
示例#47
0
raw_filt = raw_sss_pca.copy().filter(h_freq=4., l_freq=None,
                                     filter_length='30s', n_jobs=n_jobs,
                                     fir_design='firwin2', phase='zero-double')

# Pick the channels of interest
raw_filt.pick_types(meg='grad')

# Re-normalize projectors after subselection
raw_filt.info.normalize_proj()

# regularized data covariance
data_cov = mne.compute_raw_covariance(raw_filt, n_jobs=n_jobs)

# beamformer requirements
bem = op.join(subjects_dir, subject, 'bem', 'genz501_17a-5120-bem-sol.fif')
sphere = mne.make_sphere_model(r0='auto', head_radius='auto',
                               info=raw_filt.info)
src = mne.setup_volume_source_space(subject='fsaverage', bem=bem,
                                    mri=op.join(subjects_dir, 'fsaverage',
                                                'mri', 'T1.mgz')
                                    subjects_dir=subjects_dir)
fwd = mne.make_forward_solution(raw_filt.info, trans=None, src=src,
                                bem=bem, n_jobs=n_jobs)
filters = make_lcmv(raw_filt.info, fwd, data_cov, reg=0.05,
                    pick_ori='max-power', weight_norm='nai',
                    reduce_rank=True)
t0 = time.time()
stc = apply_lcmv_raw(raw_filt, filters)
print(' Time: %s mns' % round((time.time() - t0) / 60, 2))

# Save result in stc files
stc.save(op.join(datapath, subject, 'lcmv-vol'))
示例#48
0
def test_simulate_raw_sphere(raw_data, tmpdir):
    """Test simulation of raw data with sphere model."""
    seed = 42
    raw, src, stc, trans, sphere = raw_data
    assert len(pick_types(raw.info, meg=False, ecg=True)) == 1
    tempdir = str(tmpdir)

    # head pos
    head_pos_sim = _get_head_pos_sim(raw)

    #
    # Test raw simulation with basic parameters
    #
    raw.info.normalize_proj()
    cov = read_cov(cov_fname)
    cov['projs'] = raw.info['projs']
    raw.info['bads'] = raw.ch_names[:1]
    with pytest.deprecated_call(match='cov is deprecated'):
        raw_sim = simulate_raw(raw,
                               stc,
                               trans,
                               src,
                               sphere,
                               cov,
                               head_pos=head_pos_sim,
                               blink=True,
                               ecg=True,
                               random_state=seed,
                               verbose=True)
    with pytest.warns(RuntimeWarning, match='applying projector with'):
        raw_sim_2 = simulate_raw(raw,
                                 stc,
                                 trans_fname,
                                 src_fname,
                                 sphere,
                                 cov_fname,
                                 head_pos=head_pos_sim,
                                 blink=True,
                                 ecg=True,
                                 random_state=seed)
    with pytest.raises(RuntimeError, match='Maximum number of STC iterations'):
        simulate_raw(raw.info, [stc] * 5,
                     trans_fname,
                     src_fname,
                     sphere,
                     cov=None,
                     max_iter=1)
    assert_array_equal(raw_sim_2[:][0], raw_sim[:][0])
    std = dict(grad=2e-13, mag=10e-15, eeg=0.1e-6)
    with pytest.deprecated_call():
        raw_sim = simulate_raw(raw,
                               stc,
                               trans,
                               src,
                               sphere,
                               make_ad_hoc_cov(raw.info, std=std),
                               head_pos=head_pos_sim,
                               blink=True,
                               ecg=True,
                               random_state=seed)
    with pytest.deprecated_call():
        raw_sim_2 = simulate_raw(raw,
                                 stc,
                                 trans_fname,
                                 src_fname,
                                 sphere,
                                 cov=std,
                                 head_pos=head_pos_sim,
                                 blink=True,
                                 ecg=True,
                                 random_state=seed)
    assert_array_equal(raw_sim_2[:][0], raw_sim[:][0])
    sphere_norad = make_sphere_model('auto', None, raw.info)
    raw_meg = raw.copy().pick_types()
    with pytest.deprecated_call():
        raw_sim = simulate_raw(raw_meg,
                               stc,
                               trans,
                               src,
                               sphere_norad,
                               cov=None,
                               head_pos=head_pos_sim,
                               blink=True,
                               ecg=True,
                               random_state=seed)
    with pytest.deprecated_call():
        raw_sim_2 = simulate_raw(raw_meg,
                                 stc,
                                 trans_fname,
                                 src_fname,
                                 sphere_norad,
                                 cov=None,
                                 head_pos=head_pos_sim,
                                 blink=True,
                                 ecg=True,
                                 random_state=seed)
    assert_array_equal(raw_sim_2[:][0], raw_sim[:][0])
    # Test IO on processed data
    test_outname = op.join(tempdir, 'sim_test_raw.fif')
    raw_sim.save(test_outname)

    raw_sim_loaded = read_raw_fif(test_outname, preload=True)
    assert_allclose(raw_sim_loaded[:][0], raw_sim[:][0], rtol=1e-6, atol=1e-20)
    del raw_sim, raw_sim_2
    # with no cov (no noise) but with artifacts, most time periods should match
    # but the EOG/ECG channels should not
    for ecg, eog in ((True, False), (False, True), (True, True)):
        with pytest.deprecated_call():
            raw_sim_3 = simulate_raw(raw,
                                     stc,
                                     trans,
                                     src,
                                     sphere,
                                     cov=None,
                                     head_pos=head_pos_sim,
                                     blink=eog,
                                     ecg=ecg,
                                     random_state=seed)
        with pytest.deprecated_call():
            raw_sim_4 = simulate_raw(raw,
                                     stc,
                                     trans,
                                     src,
                                     sphere,
                                     cov=None,
                                     head_pos=head_pos_sim,
                                     blink=False,
                                     ecg=False,
                                     random_state=seed)
        picks = np.arange(len(raw.ch_names))
        diff_picks = pick_types(raw.info, meg=False, ecg=ecg, eog=eog)
        these_picks = np.setdiff1d(picks, diff_picks)
        close = np.isclose(raw_sim_3[these_picks][0],
                           raw_sim_4[these_picks][0],
                           atol=1e-20)
        assert np.mean(close) > 0.7
        far = ~np.isclose(
            raw_sim_3[diff_picks][0], raw_sim_4[diff_picks][0], atol=1e-20)
        assert np.mean(far) > 0.99
    del raw_sim_3, raw_sim_4

    # make sure it works with EEG-only and MEG-only
    with pytest.deprecated_call():
        raw_sim_meg = simulate_raw(raw.copy().pick_types(meg=True, eeg=False),
                                   stc,
                                   trans,
                                   src,
                                   sphere,
                                   cov=None)
        raw_sim_eeg = simulate_raw(raw.copy().pick_types(meg=False, eeg=True),
                                   stc,
                                   trans,
                                   src,
                                   sphere,
                                   cov=None)
        raw_sim_meeg = simulate_raw(raw.copy().pick_types(meg=True, eeg=True),
                                    stc,
                                    trans,
                                    src,
                                    sphere,
                                    cov=None)
    for this_raw in (raw_sim_meg, raw_sim_eeg, raw_sim_meeg):
        add_eog(this_raw, random_state=seed)
    for this_raw in (raw_sim_meg, raw_sim_meeg):
        add_ecg(this_raw, random_state=seed)
    with pytest.raises(RuntimeError, match='only add ECG artifacts if MEG'):
        add_ecg(raw_sim_eeg)
    assert_allclose(np.concatenate((raw_sim_meg[:][0], raw_sim_eeg[:][0])),
                    raw_sim_meeg[:][0],
                    rtol=1e-7,
                    atol=1e-20)
    del raw_sim_meg, raw_sim_eeg, raw_sim_meeg

    # check that raw-as-info is supported
    n_samp = len(stc.times)
    raw_crop = raw.copy().crop(0., (n_samp - 1.) / raw.info['sfreq'])
    assert len(raw_crop.times) == len(stc.times)
    with pytest.deprecated_call():
        raw_sim = simulate_raw(raw_crop, stc, trans, src, sphere, cov=None)
    with catch_logging() as log:
        raw_sim_2 = simulate_raw(raw_crop.info,
                                 stc,
                                 trans,
                                 src,
                                 sphere,
                                 cov=None,
                                 verbose=True)
    log = log.getvalue()
    assert '1 STC iteration provided' in log
    assert len(raw_sim_2.times) == n_samp
    assert_allclose(raw_sim[:, :n_samp][0],
                    raw_sim_2[:, :n_samp][0],
                    rtol=1e-5,
                    atol=1e-30)
    del raw_sim, raw_sim_2

    # check that different interpolations are similar given small movements
    with pytest.deprecated_call():
        raw_sim = simulate_raw(raw,
                               stc,
                               trans,
                               src,
                               sphere,
                               cov=None,
                               head_pos=head_pos_sim,
                               interp='linear')
    with pytest.deprecated_call():
        raw_sim_hann = simulate_raw(raw,
                                    stc,
                                    trans,
                                    src,
                                    sphere,
                                    cov=None,
                                    head_pos=head_pos_sim,
                                    interp='hann')
    assert_allclose(raw_sim[:][0], raw_sim_hann[:][0], rtol=1e-1, atol=1e-14)
    del raw_sim_hann

    # check that new Generator objects can be used
    if check_version('numpy', '1.17'):
        random_state = np.random.default_rng(seed)
        add_ecg(raw_sim, random_state=random_state)
        add_eog(raw_sim, random_state=random_state)
示例#49
0
def test_make_forward_dipole(tmpdir):
    """Test forward-projecting dipoles."""
    rng = np.random.RandomState(0)

    evoked = read_evokeds(fname_evo)[0]
    cov = read_cov(fname_cov)
    cov['projs'] = []  # avoid proj warning
    dip_c = read_dipole(fname_dip)

    # Only use magnetometers for speed!
    picks = pick_types(evoked.info, meg='mag', eeg=False)[::8]
    evoked.pick_channels([evoked.ch_names[p] for p in picks])
    evoked.info.normalize_proj()
    info = evoked.info

    # Make new Dipole object with n_test_dipoles picked from the dipoles
    # in the test dataset.
    n_test_dipoles = 3  # minimum 3 needed to get uneven sampling in time
    dipsel = np.sort(rng.permutation(np.arange(len(dip_c)))[:n_test_dipoles])
    dip_test = Dipole(times=dip_c.times[dipsel],
                      pos=dip_c.pos[dipsel],
                      amplitude=dip_c.amplitude[dipsel],
                      ori=dip_c.ori[dipsel],
                      gof=dip_c.gof[dipsel])

    sphere = make_sphere_model(head_radius=0.1)

    # Warning emitted due to uneven sampling in time
    with pytest.warns(RuntimeWarning, match='unevenly spaced'):
        fwd, stc = make_forward_dipole(dip_test, sphere, info,
                                       trans=fname_trans)

    # stc is list of VolSourceEstimate's
    assert isinstance(stc, list)
    for n_dip in range(n_test_dipoles):
        assert isinstance(stc[n_dip], VolSourceEstimate)

    # Now simulate evoked responses for each of the test dipoles,
    # and fit dipoles to them (sphere model, MEG and EEG)
    times, pos, amplitude, ori, gof = [], [], [], [], []
    nave = 200  # add a tiny amount of noise to the simulated evokeds
    for s in stc:
        evo_test = simulate_evoked(fwd, s, info, cov,
                                   nave=nave, random_state=rng)
        # evo_test.add_proj(make_eeg_average_ref_proj(evo_test.info))
        dfit, resid = fit_dipole(evo_test, cov, sphere, None)
        times += dfit.times.tolist()
        pos += dfit.pos.tolist()
        amplitude += dfit.amplitude.tolist()
        ori += dfit.ori.tolist()
        gof += dfit.gof.tolist()

    # Create a new Dipole object with the dipole fits
    dip_fit = Dipole(times, pos, amplitude, ori, gof)

    # check that true (test) dipoles and fits are "close"
    # cf. mne/tests/test_dipole.py
    diff = dip_test.pos - dip_fit.pos
    corr = np.corrcoef(dip_test.pos.ravel(), dip_fit.pos.ravel())[0, 1]
    dist = np.sqrt(np.mean(np.sum(diff * diff, axis=1)))
    gc_dist = 180 / np.pi * \
        np.mean(np.arccos(np.sum(dip_test.ori * dip_fit.ori, axis=1)))
    amp_err = np.sqrt(np.mean((dip_test.amplitude - dip_fit.amplitude) ** 2))

    # Make sure each coordinate is close to reference
    # NB tolerance should be set relative to snr of simulated evoked!
    assert_allclose(dip_fit.pos, dip_test.pos, rtol=0, atol=1e-2,
                    err_msg='position mismatch')
    assert dist < 1e-2  # within 1 cm
    assert corr > 0.985
    assert gc_dist < 20  # less than 20 degrees
    assert amp_err < 10e-9  # within 10 nAm

    # Make sure rejection works with BEM: one dipole at z=1m
    # NB _make_forward.py:_prepare_for_forward will raise a RuntimeError
    # if no points are left after min_dist exclusions, hence 2 dips here!
    dip_outside = Dipole(times=[0., 0.001],
                         pos=[[0., 0., 1.0], [0., 0., 0.040]],
                         amplitude=[100e-9, 100e-9],
                         ori=[[1., 0., 0.], [1., 0., 0.]], gof=1)
    with pytest.raises(ValueError, match='outside the inner skull'):
        make_forward_dipole(dip_outside, fname_bem, info, fname_trans)
    # if we get this far, can safely assume the code works with BEMs too
    # -> use sphere again below for speed

    # Now make an evenly sampled set of dipoles, some simultaneous,
    # should return a VolSourceEstimate regardless
    times = [0., 0., 0., 0.001, 0.001, 0.002]
    pos = np.random.rand(6, 3) * 0.020 + \
        np.array([0., 0., 0.040])[np.newaxis, :]
    amplitude = np.random.rand(6) * 100e-9
    ori = np.eye(6, 3) + np.eye(6, 3, -3)
    gof = np.arange(len(times)) / len(times)  # arbitrary

    dip_even_samp = Dipole(times, pos, amplitude, ori, gof)

    # I/O round-trip
    fname = str(tmpdir.join('test-fwd.fif'))
    with pytest.warns(RuntimeWarning, match='free orientation'):
        write_forward_solution(fname, fwd)
    fwd_read = convert_forward_solution(
        read_forward_solution(fname), force_fixed=True)
    assert_forward_allclose(fwd, fwd_read, rtol=1e-6)

    fwd, stc = make_forward_dipole(dip_even_samp, sphere, info,
                                   trans=fname_trans)
    assert isinstance(stc, VolSourceEstimate)
    assert_allclose(stc.times, np.arange(0., 0.003, 0.001))
示例#50
0
def test_gamma_map_vol_sphere():
    """Gamma MAP with a sphere forward and volumic source space."""
    evoked = read_evokeds(fname_evoked,
                          condition=0,
                          baseline=(None, 0),
                          proj=False)
    evoked.resample(50, npad=100)
    evoked.crop(tmin=0.1, tmax=0.16)  # crop to window around peak

    cov = read_cov(fname_cov)
    cov = regularize(cov, evoked.info, rank=None)

    info = evoked.info
    sphere = mne.make_sphere_model(r0=(0., 0., 0.), head_radius=0.080)
    src = mne.setup_volume_source_space(subject=None,
                                        pos=30.,
                                        mri=None,
                                        sphere=(0.0, 0.0, 0.0, 0.08),
                                        bem=None,
                                        mindist=5.0,
                                        exclude=2.0,
                                        sphere_units='m')
    fwd = mne.make_forward_solution(info,
                                    trans=None,
                                    src=src,
                                    bem=sphere,
                                    eeg=False,
                                    meg=True)

    alpha = 0.5
    pytest.raises(ValueError,
                  gamma_map,
                  evoked,
                  fwd,
                  cov,
                  alpha,
                  loose=0,
                  return_residual=False)

    pytest.raises(ValueError,
                  gamma_map,
                  evoked,
                  fwd,
                  cov,
                  alpha,
                  loose=0.2,
                  return_residual=False)

    stc = gamma_map(evoked,
                    fwd,
                    cov,
                    alpha,
                    tol=1e-4,
                    xyz_same_gamma=False,
                    update_mode=2,
                    return_residual=False)

    assert_array_almost_equal(stc.times, evoked.times, 5)

    # Compare orientation obtained using fit_dipole and gamma_map
    # for a simulated evoked containing a single dipole
    stc = mne.VolSourceEstimate(50e-9 * np.random.RandomState(42).randn(1, 4),
                                vertices=[stc.vertices[0][:1]],
                                tmin=stc.tmin,
                                tstep=stc.tstep)
    evoked_dip = mne.simulation.simulate_evoked(fwd,
                                                stc,
                                                info,
                                                cov,
                                                nave=1e9,
                                                use_cps=True)

    dip_gmap = gamma_map(evoked_dip, fwd, cov, 0.1, return_as_dipoles=True)

    amp_max = [np.max(d.amplitude) for d in dip_gmap]
    dip_gmap = dip_gmap[np.argmax(amp_max)]
    assert (dip_gmap[0].pos[0] in src[0]['rr'][stc.vertices[0]])

    dip_fit = mne.fit_dipole(evoked_dip, cov, sphere)[0]
    assert (np.abs(np.dot(dip_fit.ori[0], dip_gmap.ori[0])) > 0.99)
示例#51
0
#
# License: BSD (3-clause)

import os.path as op
import numpy as np
from mne.datasets import phantom_4dbti
import mne

###############################################################################
# Read data and compute a dipole fit at the peak of the evoked response

data_path = phantom_4dbti.data_path()
raw_fname = op.join(data_path, '%d/e,rfhp1.0Hz')

dipoles = list()
sphere = mne.make_sphere_model(r0=(0., 0., 0.), head_radius=0.080)

t0 = 0.07  # peak of the response

pos = np.empty((4, 3))
ori = np.empty((4, 3))

for ii in range(4):
    raw = mne.io.read_raw_bti(raw_fname % (ii + 1,),
                              rename_channels=False, preload=True)
    raw.info['bads'] = ['A173', 'A213', 'A232']
    events = mne.find_events(raw, 'TRIGGER', mask=4350, mask_type='not_and')
    epochs = mne.Epochs(raw, events=events, event_id=8192, tmin=-0.2, tmax=0.4,
                        preload=True)
    evoked = epochs.average()
    evoked.plot(time_unit='s')
示例#52
0
def test_channel_name_limit(tmpdir, monkeypatch, fname):
    """Test that our remapping works properly."""
    #
    # raw
    #
    if fname.endswith('fif'):
        raw = read_raw_fif(fname)
        raw.pick_channels(raw.ch_names[:3])
        ref_names = []
        data_names = raw.ch_names
    else:
        assert fname.endswith('.ds')
        raw = read_raw_ctf(fname)
        ref_names = [
            raw.ch_names[pick]
            for pick in pick_types(raw.info, meg=False, ref_meg=True)
        ]
        data_names = raw.ch_names[32:35]
    proj = dict(data=np.ones((1, len(data_names))),
                col_names=data_names[:2].copy(),
                row_names=None,
                nrow=1)
    proj = Projection(data=proj,
                      active=False,
                      desc='test',
                      kind=0,
                      explained_var=0.)
    raw.add_proj(proj, remove_existing=True)
    raw.info.normalize_proj()
    raw.pick_channels(data_names + ref_names).crop(0, 2)
    long_names = ['123456789abcdefg' + name for name in raw.ch_names]
    fname = tmpdir.join('test-raw.fif')
    with catch_logging() as log:
        raw.save(fname)
    log = log.getvalue()
    assert 'truncated' not in log
    rename = dict(zip(raw.ch_names, long_names))
    long_data_names = [rename[name] for name in data_names]
    long_proj_names = long_data_names[:2]
    raw.rename_channels(rename)
    for comp in raw.info['comps']:
        for key in ('row_names', 'col_names'):
            for name in comp['data'][key]:
                assert name in raw.ch_names
    if raw.info['comps']:
        assert raw.compensation_grade == 0
        raw.apply_gradient_compensation(3)
        assert raw.compensation_grade == 3
    assert len(raw.info['projs']) == 1
    assert raw.info['projs'][0]['data']['col_names'] == long_proj_names
    raw.info['bads'] = bads = long_data_names[2:3]
    good_long_data_names = [
        name for name in long_data_names if name not in bads
    ]
    with catch_logging() as log:
        raw.save(fname, overwrite=True, verbose=True)
    log = log.getvalue()
    assert 'truncated to 15' in log
    for name in raw.ch_names:
        assert len(name) > 15
    # first read the full way
    with catch_logging() as log:
        raw_read = read_raw_fif(fname, verbose=True)
    log = log.getvalue()
    assert 'Reading extended channel information' in log
    for ra in (raw, raw_read):
        assert ra.ch_names == long_names
    assert raw_read.info['projs'][0]['data']['col_names'] == long_proj_names
    del raw_read
    # next read as if no longer names could be read
    monkeypatch.setattr(meas_info, '_read_extended_ch_info',
                        lambda x, y, z: None)
    with catch_logging() as log:
        raw_read = read_raw_fif(fname, verbose=True)
    log = log.getvalue()
    assert 'extended' not in log
    if raw.info['comps']:
        assert raw_read.compensation_grade == 3
        raw_read.apply_gradient_compensation(0)
        assert raw_read.compensation_grade == 0
    monkeypatch.setattr(  # restore
        meas_info, '_read_extended_ch_info', _read_extended_ch_info)
    short_proj_names = [
        f'{name[:13 - bool(len(ref_names))]}-{len(ref_names) + ni}'
        for ni, name in enumerate(long_data_names[:2])
    ]
    assert raw_read.info['projs'][0]['data']['col_names'] == short_proj_names
    #
    # epochs
    #
    epochs = Epochs(raw, make_fixed_length_events(raw))
    fname = tmpdir.join('test-epo.fif')
    epochs.save(fname)
    epochs_read = read_epochs(fname)
    for ep in (epochs, epochs_read):
        assert ep.info['ch_names'] == long_names
        assert ep.ch_names == long_names
    del raw, epochs_read
    # cov
    epochs.info['bads'] = []
    cov = compute_covariance(epochs, verbose='error')
    fname = tmpdir.join('test-cov.fif')
    write_cov(fname, cov)
    cov_read = read_cov(fname)
    for co in (cov, cov_read):
        assert co['names'] == long_data_names
        assert co['bads'] == []
    del cov_read

    #
    # evoked
    #
    evoked = epochs.average()
    evoked.info['bads'] = bads
    assert evoked.nave == 1
    fname = tmpdir.join('test-ave.fif')
    evoked.save(fname)
    evoked_read = read_evokeds(fname)[0]
    for ev in (evoked, evoked_read):
        assert ev.ch_names == long_names
        assert ev.info['bads'] == bads
    del evoked_read, epochs

    #
    # forward
    #
    with pytest.warns(None):  # not enough points for CTF
        sphere = make_sphere_model('auto', 'auto', evoked.info)
    src = setup_volume_source_space(
        pos=dict(rr=[[0, 0, 0.04]], nn=[[0, 1., 0.]]))
    fwd = make_forward_solution(evoked.info, None, src, sphere)
    fname = tmpdir.join('temp-fwd.fif')
    write_forward_solution(fname, fwd)
    fwd_read = read_forward_solution(fname)
    for fw in (fwd, fwd_read):
        assert fw['sol']['row_names'] == long_data_names
        assert fw['info']['ch_names'] == long_data_names
        assert fw['info']['bads'] == bads
    del fwd_read

    #
    # inv
    #
    inv = make_inverse_operator(evoked.info, fwd, cov)
    fname = tmpdir.join('test-inv.fif')
    write_inverse_operator(fname, inv)
    inv_read = read_inverse_operator(fname)
    for iv in (inv, inv_read):
        assert iv['info']['ch_names'] == good_long_data_names
    apply_inverse(evoked, inv)  # smoke test
示例#53
0
def dipolarity(mixing,
               inst,
               picks,
               fname_bem=None,
               fname_trans=None,
               min_dist=5,
               n_jobs=1,
               verbose=None):
    n_channels = inst.info['nchan']
    ch_names = inst.info['ch_names']
    cov = mne.Covariance(np.eye(n_channels),
                         ch_names,
                         bads=[],
                         projs=[],
                         nfree=1)
    if fname_bem is None:
        head_radius = 0.085
        pos = np.array([c['loc'][:3] for c in inst.info['chs']])
        pos /= np.sqrt(np.sum(pos**2, axis=1))[:, None]
        pos *= head_radius
        kind = "eeglab"
        selection = np.arange(n_channels)
        montage = mne.channels.Montage(pos, ch_names, kind, selection)
        inst.set_montage(montage)
        inst.set_channel_types({'LEYE': 'eog', 'REYE': 'eog'})
        fname_bem =\
            mne.make_sphere_model(r0=(0.0, 0.0, 0.0),
                                  head_radius=head_radius,
                                  relative_radii=[0.8353, 0.847, 0.93, 1],
                                  sigmas=(0.33, 1.0, 0.0042, 0.33))
        picks = mne.pick_types(inst.info, eeg=True, eog=False)
    info = mne.pick_info(inst.info, sel=picks)
    evoked = mne.EvokedArray(mixing, info, tmin=0, comment='ICA components')

    info['projs'] = []  # get rid of SSP projections
    if 'eeg' in evoked:
        evoked = evoked.copy()
        avg_proj = mne.io.make_eeg_average_ref_proj(evoked.info)
        evoked.add_proj([avg_proj])
        evoked.apply_proj()

    dip, residual = mne.fit_dipole(evoked,
                                   cov,
                                   fname_bem,
                                   fname_trans,
                                   min_dist=min_dist,
                                   verbose=verbose,
                                   n_jobs=n_jobs)

    gof = (1. -
           np.sum(residual.data**2, axis=0) / np.sum(evoked.data**2, axis=0))

    gof = 100. * gof  # Scale the gof between 0 and 100

    # if some gof is NaN, raise an Error
    if np.sum(np.isnan(gof)) > 0:
        raise ValueError('ERROR!, some gof are NaN. This usually happens '
                         'because some dipoles position resulting to be too '
                         'close to the inner sphere. To solve this issue, '
                         'consider using  a different value for the min_dist '
                         'parameter.')

    # Do not sort the columns of A, neither the gof, this way is easier to
    # mantain the one-to-one correspondence between the columns of A and the
    # the measures associated to them (gof, depth, radiality, etc)

    # idx_sort_desc = np.argsort(gof)[::-1]
    # evoked.data = evoked.data[:, idx_sort_desc]
    # gof = gof[idx_sort_desc]

    return gof, dip, evoked
# Uncomment the following line to align the data yourself.

# mne.gui.coregistration(subject='sample', subjects_dir=subjects_dir)

###############################################################################
# .. _plot_source_alignment_without_mri:
#
# Alignment without MRI
# ---------------------
# The surface alignments above are possible if you have the surfaces available
# from Freesurfer. :func:`mne.viz.plot_alignment` automatically searches for
# the correct surfaces from the provided ``subjects_dir``. Another option is
# to use a :ref:`spherical conductor model <ch_forward_spherical_model>`. It is
# passed through ``bem`` parameter.

sphere = mne.make_sphere_model(info=raw.info, r0='auto', head_radius='auto')
src = mne.setup_volume_source_space(sphere=sphere, pos=10.)
mne.viz.plot_alignment(raw.info,
                       eeg='projected',
                       bem=sphere,
                       src=src,
                       dig=True,
                       surfaces=['brain', 'outer_skin'],
                       coord_frame='meg',
                       show_axes=True)

###############################################################################
# It is also possible to use :func:`mne.gui.coregistration`
# to warp a subject (usually ``fsaverage``) to subject digitization data, see
# `these slides
# <https://www.slideshare.net/mne-python/mnepython-scale-mri>`_.
示例#55
0
                         '{}_ann_MEGartif_flt.txt'.format(fname_noext)))
        if len(anns_MEG_artif_flt) > 0:
            print('Artif found in filtered {}, maxlen {:.3f} totlen {:.3f}'.
                  format(anns_MEG_artif_flt,
                         np.max(anns_MEG_artif_flt.duration),
                         np.sum(anns_MEG_artif_flt.duration)))
        else:
            print('Artif found in filtered {} is NONE'.format(
                anns_MEG_artif_flt))

    if not do_removeMEG and not do_ICA_only:
        mod_info, infos = upre.readInfo(fname_noext, f)
        radius, origin, _ = mne.bem.fit_sphere_to_headshape(
            mod_info, dig_kinds=('cardinal', 'hpi'))
        sphere = mne.make_sphere_model(info=mod_info,
                                       r0=origin,
                                       head_radius=radius)
        src = mne.setup_volume_source_space(sphere=sphere, pos=10.)

        if do_plot_helmet:
            import mayavi
            mne.viz.plot_alignment(mod_info,
                                   eeg='projected',
                                   bem=sphere,
                                   src=src,
                                   dig=True,
                                   surfaces=['brain', 'outer_skin'],
                                   coord_frame='meg',
                                   show_axes=True)
            mayavi.mlab.savefig(
                os.path.join(dir_fig,
示例#56
0
def test_simulate_raw_sphere(raw_data, tmpdir):
    """Test simulation of raw data with sphere model."""
    seed = 42
    raw, src, stc, trans, sphere = raw_data
    assert len(pick_types(raw.info, meg=False, ecg=True)) == 1
    tempdir = str(tmpdir)

    # head pos
    head_pos_sim = _get_head_pos_sim(raw)

    #
    # Test raw simulation with basic parameters
    #
    raw.info.normalize_proj()
    cov = read_cov(cov_fname)
    cov['projs'] = raw.info['projs']
    raw.info['bads'] = raw.ch_names[:1]
    sphere_norad = make_sphere_model('auto', None, raw.info)
    raw_meg = raw.copy().pick_types()
    raw_sim = simulate_raw(raw_meg.info, stc, trans, src, sphere_norad,
                           head_pos=head_pos_sim)
    # Test IO on processed data
    test_outname = op.join(tempdir, 'sim_test_raw.fif')
    raw_sim.save(test_outname)

    raw_sim_loaded = read_raw_fif(test_outname, preload=True)
    assert_allclose(raw_sim_loaded[:][0], raw_sim[:][0], rtol=1e-6, atol=1e-20)
    del raw_sim

    # make sure it works with EEG-only and MEG-only
    raw_sim_meg = simulate_raw(
        raw.copy().pick_types(meg=True, eeg=False).info,
        stc, trans, src, sphere)
    raw_sim_eeg = simulate_raw(
        raw.copy().pick_types(meg=False, eeg=True).info,
        stc, trans, src, sphere)
    raw_sim_meeg = simulate_raw(
        raw.copy().pick_types(meg=True, eeg=True).info,
        stc, trans, src, sphere)
    for this_raw in (raw_sim_meg, raw_sim_eeg, raw_sim_meeg):
        add_eog(this_raw, random_state=seed)
    for this_raw in (raw_sim_meg, raw_sim_meeg):
        add_ecg(this_raw, random_state=seed)
    with pytest.raises(RuntimeError, match='only add ECG artifacts if MEG'):
        add_ecg(raw_sim_eeg)
    assert_allclose(np.concatenate((raw_sim_meg[:][0], raw_sim_eeg[:][0])),
                    raw_sim_meeg[:][0], rtol=1e-7, atol=1e-20)
    del raw_sim_meg, raw_sim_eeg, raw_sim_meeg

    # check that raw-as-info is supported
    n_samp = len(stc.times)
    raw_crop = raw.copy().crop(0., (n_samp - 1.) / raw.info['sfreq'])
    assert len(raw_crop.times) == len(stc.times)
    raw_sim = simulate_raw(raw_crop.info, stc, trans, src, sphere)
    with catch_logging() as log:
        raw_sim_2 = simulate_raw(raw_crop.info, stc, trans, src, sphere,
                                 verbose=True)
    log = log.getvalue()
    assert '1 STC iteration provided' in log
    assert len(raw_sim_2.times) == n_samp
    assert_allclose(raw_sim[:, :n_samp][0],
                    raw_sim_2[:, :n_samp][0], rtol=1e-5, atol=1e-30)
    del raw_sim, raw_sim_2

    # check that different interpolations are similar given small movements
    raw_sim = simulate_raw(raw.info, stc, trans, src, sphere,
                           head_pos=head_pos_sim, interp='linear')
    raw_sim_hann = simulate_raw(raw.info, stc, trans, src, sphere,
                                head_pos=head_pos_sim, interp='hann')
    assert_allclose(raw_sim[:][0], raw_sim_hann[:][0], rtol=1e-1, atol=1e-14)
    del raw_sim_hann

    # check that new Generator objects can be used
    if check_version('numpy', '1.17'):
        random_state = np.random.default_rng(seed)
        add_ecg(raw_sim, random_state=random_state)
        add_eog(raw_sim, random_state=random_state)
示例#57
0
def test_dipole_fitting_fixed(tmpdir):
    """Test dipole fitting with a fixed position."""
    tpeak = 0.073
    sphere = make_sphere_model(head_radius=0.1)
    evoked = read_evokeds(fname_evo, baseline=(None, 0))[0]
    evoked.pick_types(meg=True)
    t_idx = np.argmin(np.abs(tpeak - evoked.times))
    evoked_crop = evoked.copy().crop(tpeak, tpeak)
    assert len(evoked_crop.times) == 1
    cov = read_cov(fname_cov)
    dip_seq, resid = fit_dipole(evoked_crop, cov, sphere)
    assert isinstance(dip_seq, Dipole)
    assert isinstance(resid, Evoked)
    assert len(dip_seq.times) == 1
    pos, ori, gof = dip_seq.pos[0], dip_seq.ori[0], dip_seq.gof[0]
    amp = dip_seq.amplitude[0]
    # Fix position, allow orientation to change
    dip_free, resid_free = fit_dipole(evoked, cov, sphere, pos=pos)
    assert isinstance(dip_free, Dipole)
    assert isinstance(resid_free, Evoked)
    assert_allclose(dip_free.times, evoked.times)
    assert_allclose(np.tile(pos[np.newaxis], (len(evoked.times), 1)),
                    dip_free.pos)
    assert_allclose(ori, dip_free.ori[t_idx])  # should find same ori
    assert (np.dot(dip_free.ori, ori).mean() < 0.9)  # but few the same
    assert_allclose(gof, dip_free.gof[t_idx])  # ... same gof
    assert_allclose(amp, dip_free.amplitude[t_idx])  # and same amp
    assert_allclose(resid.data, resid_free.data[:, [t_idx]])
    # Fix position and orientation
    dip_fixed, resid_fixed = fit_dipole(evoked, cov, sphere, pos=pos, ori=ori)
    assert (isinstance(dip_fixed, DipoleFixed))
    assert_allclose(dip_fixed.times, evoked.times)
    assert_allclose(dip_fixed.info['chs'][0]['loc'][:3], pos)
    assert_allclose(dip_fixed.info['chs'][0]['loc'][3:6], ori)
    assert_allclose(dip_fixed.data[1, t_idx], gof)
    assert_allclose(resid.data, resid_fixed.data[:, [t_idx]])
    _check_roundtrip_fixed(dip_fixed, tmpdir)
    # bad resetting
    evoked.info['bads'] = [evoked.ch_names[3]]
    dip_fixed, resid_fixed = fit_dipole(evoked, cov, sphere, pos=pos, ori=ori)
    # Degenerate conditions
    evoked_nan = evoked.copy().crop(0, 0)
    evoked_nan.data[0, 0] = None
    pytest.raises(ValueError, fit_dipole, evoked_nan, cov, sphere)
    pytest.raises(ValueError, fit_dipole, evoked, cov, sphere, ori=[1, 0, 0])
    pytest.raises(ValueError,
                  fit_dipole,
                  evoked,
                  cov,
                  sphere,
                  pos=[0, 0, 0],
                  ori=[2, 0, 0])
    pytest.raises(ValueError, fit_dipole, evoked, cov, sphere, pos=[0.1, 0, 0])
    # copying
    dip_fixed_2 = dip_fixed.copy()
    dip_fixed_2.data[:] = 0.
    assert not np.isclose(dip_fixed.data, 0., atol=1e-20).any()
    # plotting
    plt.close('all')
    dip_fixed.plot()
    plt.close('all')
    orig_times = np.array(dip_fixed.times)
    shift_times = dip_fixed.shift_time(1.).times
    assert_allclose(shift_times, orig_times + 1)
示例#58
0
def test_plot_alignment(tmpdir):
    """Test plotting of -trans.fif files and MEG sensor layouts."""
    # generate fiducials file for testing
    tempdir = str(tmpdir)
    fiducials_path = op.join(tempdir, 'fiducials.fif')
    fid = [{'coord_frame': 5, 'ident': 1, 'kind': 1,
            'r': [-0.08061612, -0.02908875, -0.04131077]},
           {'coord_frame': 5, 'ident': 2, 'kind': 1,
            'r': [0.00146763, 0.08506715, -0.03483611]},
           {'coord_frame': 5, 'ident': 3, 'kind': 1,
            'r': [0.08436285, -0.02850276, -0.04127743]}]
    write_dig(fiducials_path, fid, 5)

    mlab = _import_mlab()
    evoked = read_evokeds(evoked_fname)[0]
    sample_src = read_source_spaces(src_fname)
    bti = read_raw_bti(pdf_fname, config_fname, hs_fname, convert=True,
                       preload=False).info
    infos = dict(
        Neuromag=evoked.info,
        CTF=read_raw_ctf(ctf_fname).info,
        BTi=bti,
        KIT=read_raw_kit(sqd_fname).info,
    )
    for system, info in infos.items():
        meg = ['helmet', 'sensors']
        if system == 'KIT':
            meg.append('ref')
        plot_alignment(info, trans_fname, subject='sample',
                       subjects_dir=subjects_dir, meg=meg)
        mlab.close(all=True)
    # KIT ref sensor coil def is defined
    mlab.close(all=True)
    info = infos['Neuromag']
    pytest.raises(TypeError, plot_alignment, 'foo', trans_fname,
                  subject='sample', subjects_dir=subjects_dir)
    pytest.raises(TypeError, plot_alignment, info, trans_fname,
                  subject='sample', subjects_dir=subjects_dir, src='foo')
    pytest.raises(ValueError, plot_alignment, info, trans_fname,
                  subject='fsaverage', subjects_dir=subjects_dir,
                  src=sample_src)
    sample_src.plot(subjects_dir=subjects_dir, head=True, skull=True,
                    brain='white')
    mlab.close(all=True)
    # no-head version
    mlab.close(all=True)
    # all coord frames
    pytest.raises(ValueError, plot_alignment, info)
    plot_alignment(info, surfaces=[])
    for coord_frame in ('meg', 'head', 'mri'):
        plot_alignment(info, meg=['helmet', 'sensors'], dig=True,
                       coord_frame=coord_frame, trans=trans_fname,
                       subject='sample', mri_fiducials=fiducials_path,
                       subjects_dir=subjects_dir, src=sample_src)
        mlab.close(all=True)
    # EEG only with strange options
    evoked_eeg_ecog_seeg = evoked.copy().pick_types(meg=False, eeg=True)
    evoked_eeg_ecog_seeg.info['projs'] = []  # "remove" avg proj
    evoked_eeg_ecog_seeg.set_channel_types({'EEG 001': 'ecog',
                                            'EEG 002': 'seeg'})
    with pytest.warns(RuntimeWarning, match='Cannot plot MEG'):
        plot_alignment(evoked_eeg_ecog_seeg.info, subject='sample',
                       trans=trans_fname, subjects_dir=subjects_dir,
                       surfaces=['white', 'outer_skin', 'outer_skull'],
                       meg=['helmet', 'sensors'],
                       eeg=['original', 'projected'], ecog=True, seeg=True)
    mlab.close(all=True)

    sphere = make_sphere_model(info=evoked.info, r0='auto', head_radius='auto')
    bem_sol = read_bem_solution(op.join(subjects_dir, 'sample', 'bem',
                                        'sample-1280-1280-1280-bem-sol.fif'))
    bem_surfs = read_bem_surfaces(op.join(subjects_dir, 'sample', 'bem',
                                          'sample-1280-1280-1280-bem.fif'))
    sample_src[0]['coord_frame'] = 4  # hack for coverage
    plot_alignment(info, subject='sample', eeg='projected',
                   meg='helmet', bem=sphere, dig=True,
                   surfaces=['brain', 'inner_skull', 'outer_skull',
                             'outer_skin'])
    plot_alignment(info, trans_fname, subject='sample', meg='helmet',
                   subjects_dir=subjects_dir, eeg='projected', bem=sphere,
                   surfaces=['head', 'brain'], src=sample_src)
    assert all(surf['coord_frame'] == FIFF.FIFFV_COORD_MRI
               for surf in bem_sol['surfs'])
    plot_alignment(info, trans_fname, subject='sample', meg=[],
                   subjects_dir=subjects_dir, bem=bem_sol, eeg=True,
                   surfaces=['head', 'inflated', 'outer_skull', 'inner_skull'])
    assert all(surf['coord_frame'] == FIFF.FIFFV_COORD_MRI
               for surf in bem_sol['surfs'])
    plot_alignment(info, trans_fname, subject='sample',
                   meg=True, subjects_dir=subjects_dir,
                   surfaces=['head', 'inner_skull'], bem=bem_surfs)
    sphere = make_sphere_model('auto', 'auto', evoked.info)
    src = setup_volume_source_space(sphere=sphere)
    plot_alignment(info, eeg='projected', meg='helmet', bem=sphere,
                   src=src, dig=True, surfaces=['brain', 'inner_skull',
                                                'outer_skull', 'outer_skin'])
    sphere = make_sphere_model('auto', None, evoked.info)  # one layer
    plot_alignment(info, trans_fname, subject='sample', meg=False,
                   coord_frame='mri', subjects_dir=subjects_dir,
                   surfaces=['brain'], bem=sphere, show_axes=True)

    # 3D coil with no defined draw (ConvexHull)
    info_cube = pick_info(info, [0])
    info['dig'] = None
    info_cube['chs'][0]['coil_type'] = 9999
    with pytest.raises(RuntimeError, match='coil definition not found'):
        plot_alignment(info_cube, meg='sensors', surfaces=())
    coil_def_fname = op.join(tempdir, 'temp')
    with open(coil_def_fname, 'w') as fid:
        fid.write(coil_3d)
    with use_coil_def(coil_def_fname):
        plot_alignment(info_cube, meg='sensors', surfaces=(), dig=True)

    # one layer bem with skull surfaces:
    pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir,
                  surfaces=['brain', 'head', 'inner_skull'], bem=sphere)
    # wrong eeg value:
    pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir, eeg='foo')
    # wrong meg value:
    pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir, meg='bar')
    # multiple brain surfaces:
    pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir,
                  surfaces=['white', 'pial'])
    pytest.raises(TypeError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir,
                  surfaces=[1])
    pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir,
                  surfaces=['foo'])
    mlab.close(all=True)