def __init__(self, model_keyword, batch_size, websocket_port):
      Borg.__init__(self)

      if 'model' not in self.__dict__:
         print 'Creating new Borg worker'
         if model_keyword == 'mnist':
             self.model = mnistdnn.MnistDNN(batch_size, gpu=True)
         elif model_keyword == 'higgs':
             self.model = higgsdnn.HiggsDNN(batch_size)
         elif model_keyword == 'molecular':
             self.model = moleculardnn.MolecularDNN(batch_size)
         else:
            raise
         self.batch_size = batch_size
         self.websocket_port = websocket_port
         self.loop = IOLoop.current()
         self.loop.run_sync(self.init_websocket)
         self.iteration = 0
示例#2
0
#import sys

directory = "/user/root/"

model_keyword = 'higgs'
if model_keyword == 'mnist':
    training_rdd_filename = '%smnist_train.csv' % directory
    test_filename = '%smnist_test.csv' % directory
    local_test_path = '/home/ubuntu/mnist_test.csv'
    partitions = 48
    warmup = 2000
    batch_sz = 50
    epochs = 5
    repartition = True
    time_lag = 100
    model = mnistdnn.MnistDNN(batch_sz)
elif model_keyword == 'higgs':
    training_rdd_filename = '%shiggs_train_all.csv' % directory
    test_filename = '%shiggs_test_all.csv' % directory
    local_test_path = '/home/ubuntu/higgs_test_all.csv'
    warmup = 20000
    epochs = 1
    partitions = 64
    batch_sz = 128
    time_lag = 20
    repartition = True
    model = higgsdnn.HiggsDNN(batch_sz)
elif model_keyword == 'molecular':
    training_rdd_filename = '%smolecular_train_all.csv' % directory                                                                                                        
    test_filename = '%smolecular_test_all.csv' % directory                                                                                                                 
    local_test_path = '/home/ubuntu/molecular_test_all.csv'                                                                                                                
示例#3
0
import os
import random

MASTER_IP = '172.31.1.230'
SPARK_MASTER_PORT = 7077
SPARK_APP_NAME = 'Herp Derp'
HDFS_PORT = 9000
HDFS_DIRECTORY = '/mnist/'
LOCAL_DIRECTORY = "/home/ubuntu/ssp-ml/"
ERROR_RATES_PATH = "/home/ubuntu/ssp-ml/errors.txt"
WEBSOCKET_PORT = 8123  # random.randint(30000, 60000)
MODEL_KEYWORD = 'mnist'

if MODEL_KEYWORD == 'mnist':
    TRAINING_RDD_FILENAME = ('hdfs://%s:%d' % (MASTER_IP, HDFS_PORT)) + \
        os.path.join(HDFS_DIRECTORY, 'mnist_train.csv')
    TEST_FILENAME = ('hdfs://%s:%d' % (MASTER_IP, HDFS_PORT)) + \
        os.path.join(HDFS_DIRECTORY, 'mnist_test.csv')
    LOCAL_TEST_PATH = os.path.join(LOCAL_DIRECTORY, 'mnist_test.csv')
    NUM_PARTITIONS = 3
    NUM_EPOCHS = 2
    WARMUP = 2000
    BATCH_SIZE = 50
    #BATCH_SIZE = 0
    EPOCHS = 5
    REPARTITION = True
    TIME_LAG = 100
    MODEL = mnistdnn.MnistDNN(BATCH_SIZE)
else:
    raise NotImplementedError('Currently only mnist model works')