def driver(argv: argparse.Namespace): caffe_pb2 = loader.import_caffe_pb2(argv.caffe_parser_path) proto, model = loader.load_caffe_proto_model(caffe_pb2, argv.input_proto, argv.input_model) update_extractors_with_extensions( caffe_type_extractors, argv.disable_omitting_optional if hasattr( argv, 'disable_omitting_optional') else False, argv.disable_flattening_optional_params if hasattr( argv, 'disable_flattening_optional_params') else False) try: graph, original_shapes = loader.caffe_pb_to_nx(proto, model) except ValueError as e: raise Error( 'Invalid prototxt file: value error {}. ' + refer_to_faq_msg(11), str(e)) from e graph.check_empty_graph('load_caffe_proto_model') graph.__setattr__('proto_path', argv.input_proto) graph.__setattr__('caffemodel_path', argv.input_model) graph.__setattr__('name', getattr(proto, 'name', None) or argv.model_name) graph.graph['layout'] = 'NCHW' graph.graph['cmd_params'] = argv graph.graph['fw'] = 'caffe' graph.graph['original_shapes'] = original_shapes graph.graph['caffe_pb2'] = caffe_pb2 graph.graph['ir_version'] = get_ir_version(argv) graph.graph['original_shapes'] = original_shapes graph.graph['caffe_pb2'] = caffe_pb2 custom_layers_map = custom_layers_mapping.load_layers_xml(argv.k) custom_layers_mapping.update_extractors( caffe_type_extractors, custom_layers_map, argv.disable_omitting_optional if hasattr( argv, 'disable_omitting_optional') else False, argv.enable_flattening_nested_params if hasattr( argv, 'enable_flattening_nested_params') else False) extract_node_attrs( graph, lambda node: caffe_extractor( node, check_for_duplicates(caffe_type_extractors))) # --------------------------------- LOAD END ------------------------------------------------------ class_registration.apply_replacements(graph, [ class_registration.ClassType.FRONT_REPLACER, class_registration.ClassType.MIDDLE_REPLACER, class_registration.ClassType.BACK_REPLACER ]) return graph
def load(self, graph: Graph): argv = graph.graph['cmd_params'] caffe_pb2 = loader.import_caffe_pb2(argv.caffe_parser_path) proto, model = loader.load_caffe_proto_model(caffe_pb2, argv.input_proto, argv.input_model) update_extractors_with_extensions( caffe_type_extractors, argv.disable_omitting_optional if hasattr( argv, 'disable_omitting_optional') else False, argv.disable_flattening_optional_params if hasattr( argv, 'disable_flattening_optional_params') else False) try: original_shapes = loader.caffe_pb_to_nx(graph, proto, model) except ValueError as e: raise Error( 'Invalid prototxt file: value error {}. ' + refer_to_faq_msg(11), str(e)) from e graph.check_empty_graph('load_caffe_proto_model') graph.__setattr__('proto_path', argv.input_proto) graph.__setattr__('caffemodel_path', argv.input_model) graph.__setattr__('name', getattr(proto, 'name', None) or argv.model_name) graph.graph['layout'] = 'NCHW' graph.graph['fw'] = 'caffe' graph.graph['original_shapes'] = original_shapes graph.graph['caffe_pb2'] = caffe_pb2 custom_layers_map = custom_layers_mapping.load_layers_xml(argv.k) custom_layers_mapping.update_extractors( caffe_type_extractors, custom_layers_map, argv.disable_omitting_optional if hasattr( argv, 'disable_omitting_optional') else False, argv.enable_flattening_nested_params if hasattr( argv, 'enable_flattening_nested_params') else False) extract_node_attrs( graph, lambda node: caffe_extractor( node, check_for_duplicates(caffe_type_extractors)))
def driver(argv: argparse.Namespace, proto_file_name: str, model_file_name: str, output_model_name: str, outputs: list, output_dir: str, scale: float, user_shapes: [None, list, np.array] = None, mean_scale_values: [dict, list] = (), mean_file: str = "", mean_file_offsets: tuple = None, custom_layers_mapping_path: str = None): meta_info = get_meta_info(argv) FusePermutesSequence.enabled = False proto, model = loader.load_caffe_proto_model(proto_file_name, model_file_name) update_extractors_with_extensions( caffe_type_extractors, argv.disable_omitting_optional if hasattr( argv, 'disable_omitting_optional') else False, argv.disable_flattening_optional_params if hasattr( argv, 'disable_flattening_optional_params') else False) try: graph, original_shapes = loader.caffe_pb_to_nx(proto, model) except ValueError as e: raise Error( 'Invalid prototxt file: value error {}. ' + refer_to_faq_msg(11), str(e)) from e log.debug("After caffe_pb_to_nx") print_graph_stat(graph) check_empty_graph(graph, 'load_caffe_proto_model') graph.__setattr__('proto_path', proto_file_name) graph.__setattr__('caffemodel_path', model_file_name) graph.__setattr__('name', getattr(proto, 'name', None) or output_model_name) graph.graph['layout'] = 'NCHW' graph.graph['cmd_params'] = argv graph.graph['fw'] = 'caffe' graph.graph['ir_version'] = 2 if argv.generate_deprecated_IR_V2 else 4 extract_node_attrs(graph, lambda node: (True, common_caffe_fields(node))) log.debug("After adding specific nodes for outputs") print_graph_stat(graph) custom_layers_map = custom_layers_mapping.load_layers_xml( custom_layers_mapping_path) custom_layers_mapping.update_extractors( caffe_type_extractors, custom_layers_map, argv.disable_omitting_optional if hasattr( argv, 'disable_omitting_optional') else False, argv.enable_flattening_nested_params if hasattr( argv, 'enable_flattening_nested_params') else False) extract_node_attrs( graph, lambda node: caffe_extractor( node, check_for_duplicates(caffe_type_extractors))) log.debug("After extract_node_attr") print_graph_stat(graph) packed_user_shapes, packed_outputs, freeze_placeholder = user_data_repack( graph, user_shapes, outputs, argv.freeze_placeholder_with_value) if argv.freeze_placeholder_with_value is not None: FreezePlaceholderValue.enabled = True FreezePlaceholderValue.replacement_dict = freeze_placeholder class_registration.update_registration([FrontReplacementSubgraph]) output_op_nodes = add_output_ops(graph, packed_outputs) input_op_nodes = add_input_ops(graph, packed_user_shapes, True) override_placeholder_shapes(graph, packed_user_shapes) override_batch(graph, argv.batch) graph_clean_up(graph) check_empty_graph(graph, 'add_output_ops and add_input_ops') class_registration.apply_replacements( graph, class_registration.ClassType.FRONT_REPLACER) graph = create_tensor_nodes(graph) log.debug("After create_tensor_nodes") print_graph_stat(graph) remove_op_nodes(graph, {'op': 'Identity'}) remove_output_ops(graph) graph_clean_up(graph) log.debug("After removing specific nodes for output") print_graph_stat(graph) # you need to pass required network outputs here # but we don't have a way yet, so just passing all discovered sinks mark_outputs(graph) graph_clean_up(graph) log.debug("After graph_cleanup") print_graph_stat(graph) graph = partial_infer(graph) log.debug("After partial_infer") print_graph_stat(graph) check_empty_graph(graph, 'partial_infer') duplicate_shared_weights(graph) input_op_nodes = add_input_ops(graph, packed_user_shapes, False) graph_clean_up(graph) check_empty_graph(graph, 'add_input_ops') scale_input(graph, scale) add_mean_scale_values(graph, mean_scale_values) log.debug("Split multi input convolutions") convert_multi_input_conv(graph) graph_clean_up(graph) log.debug("After graph_cleanup") print_graph_stat(graph) remove_op_nodes(graph, {'op': 'Dropout'}) remove_op_nodes(graph, {'phase': 0}) graph_clean_up(graph) class_registration.apply_replacements( graph, class_registration.ClassType.MIDDLE_REPLACER) mean_to_avgpool(graph) # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes mark_unfused_nodes(graph, argv.finegrain_fusing) #need this pass even without fusing to convert scale with 2 inputs convert_scale_shift_to_mul_add(graph) graph_clean_up(graph) if not argv.disable_fusing: convert_bn_to_mul_add(graph) graph_clean_up(graph) fuse_mul_add_sequence(graph) graph_clean_up(graph) fuse_linear_ops(graph) graph_clean_up(graph) if not argv.disable_resnet_optimization: stride_optimization(graph) convert_muladd_to_scaleshift_or_power(graph) convert_matmul_to_fully_connected(graph) batch_norm_fuse(graph) convert_mul_add_to_power(graph) convert_add_to_scaleshift(graph) # scale = 1 convert_mul_to_scaleshift(graph) # biases = 0 graph_clean_up(graph) log.debug("After graph_cleanup") print_graph_stat(graph) if argv.reverse_input_channels: reverse_input_channels(graph) if argv.move_to_preprocess: move_scaleshift_to_preprocess(graph) graph_clean_up(graph) fuse_sequence_of_reshapes(graph) input_names = find_inputs(graph) mf = [] try: if mean_file and len(original_shapes) == 1: mf = loader.parse_mean(mean_file, original_shapes[input_names[0]], mean_file_offsets) elif mean_file: raise Error( 'Mean file for topologies with multiple inputs is not supported. ' + refer_to_faq_msg(9)) except ValueError as e: raise Error( 'Cannot load or process mean file: value error {}. ' + refer_to_faq_msg(10), str(e)) from e class_registration.apply_replacements( graph, class_registration.ClassType.BACK_REPLACER) prepare_emit_ir(graph=graph, data_type=argv.data_type, output_dir=output_dir, output_model_name=output_model_name, mean_data=mf, input_names=input_names, meta_info=meta_info) return 0
def driver(argv: argparse.Namespace, proto_file_name: str, model_file_name: str, output_model_name: str, output_dir: str, caffe_proto_path: str, mean_file: str = "", mean_file_offsets: tuple = None, custom_layers_mapping_path: str = None): log_step(argv.steps, 'LOAD') meta_info = get_meta_info(argv) caffe_pb2 = loader.import_caffe_pb2(caffe_proto_path) proto, model = loader.load_caffe_proto_model(caffe_pb2, proto_file_name, model_file_name) update_extractors_with_extensions( caffe_type_extractors, argv.disable_omitting_optional if hasattr( argv, 'disable_omitting_optional') else False, argv.disable_flattening_optional_params if hasattr( argv, 'disable_flattening_optional_params') else False) try: graph, original_shapes = loader.caffe_pb_to_nx(proto, model) except ValueError as e: raise Error( 'Invalid prototxt file: value error {}. ' + refer_to_faq_msg(11), str(e)) from e log.debug("After caffe_pb_to_nx") graph.print_graph_stat() graph.check_empty_graph('load_caffe_proto_model') graph.__setattr__('proto_path', proto_file_name) graph.__setattr__('caffemodel_path', model_file_name) graph.__setattr__('name', getattr(proto, 'name', None) or output_model_name) graph.graph['layout'] = 'NCHW' graph.graph['cmd_params'] = argv graph.graph['fw'] = 'caffe' if graph.graph['cmd_params'].generate_experimental_IR_V10: version = 10 else: version = 6 graph.graph[ 'ir_version'] = 2 if argv.generate_deprecated_IR_V2 else version custom_layers_map = custom_layers_mapping.load_layers_xml( custom_layers_mapping_path) custom_layers_mapping.update_extractors( caffe_type_extractors, custom_layers_map, argv.disable_omitting_optional if hasattr( argv, 'disable_omitting_optional') else False, argv.enable_flattening_nested_params if hasattr( argv, 'enable_flattening_nested_params') else False) extract_node_attrs( graph, lambda node: caffe_extractor( node, check_for_duplicates(caffe_type_extractors))) # --------------------------------- LOAD END ------------------------------------------------------ log_step(argv.steps, 'FRONT') class_registration.apply_replacements( graph, class_registration.ClassType.FRONT_REPLACER) log_step(argv.steps, 'MIDDLE') class_registration.apply_replacements( graph, class_registration.ClassType.MIDDLE_REPLACER) # Mark nodes with attr 'can_be_fused': False to disable fusing for specified nodes mark_unfused_nodes(graph, argv.finegrain_fusing) # need this pass even without fusing to convert scale with 2 inputs convert_scale_shift_to_mul_add(graph) graph_clean_up(graph) if not argv.disable_fusing: convert_bn_to_mul_add(graph) graph_clean_up(graph) fuse_mul_add_sequence(graph) graph_clean_up(graph) fuse_linear_ops(graph) graph_clean_up(graph) if not argv.disable_resnet_optimization: stride_optimization(graph) convert_muladd_to_scaleshift(graph) convert_matmul_to_fully_connected(graph) batch_norm_fuse(graph) convert_add_or_mul_to_scaleshift(graph) # scale = 1 graph_clean_up(graph) log.debug("After graph_cleanup") graph.print_graph_stat() if argv.reverse_input_channels: reverse_input_channels(graph) if argv.move_to_preprocess: move_scaleshift_to_preprocess(graph) graph_clean_up(graph) FuseReshapesSequence().find_and_replace_pattern(graph) RemoveRedundantReshapes().find_and_replace_pattern(graph) input_names = find_inputs(graph) mf = [] try: if mean_file and len(original_shapes) == 1: mf = loader.parse_mean(mean_file, original_shapes[input_names[0]], mean_file_offsets, caffe_pb2) elif mean_file: raise Error( 'Mean file for topologies with multiple inputs is not supported. ' + refer_to_faq_msg(9)) except ValueError as e: raise Error( 'Cannot load or process mean file: value error {}. ' + refer_to_faq_msg(10), str(e)) from e merge_nodes_permutations(graph) permute_data_nodes_attrs(graph) permute_op_nodes_attrs(graph) graph_clean_up(graph) log_step(argv.steps, 'BACK') class_registration.apply_replacements( graph, class_registration.ClassType.BACK_REPLACER) remove_const_ops(graph) CreateConstNodesReplacement().find_and_replace_pattern(graph) remove_output_ops(graph) log_step(argv.steps, 'EMIT') prepare_emit_ir(graph=graph, data_type=argv.data_type, output_dir=output_dir, output_model_name=output_model_name, mean_data=mf, input_names=input_names, meta_info=meta_info) return 0
def driver(argv: argparse.Namespace, proto_file_name: str, model_file_name: str, output_model_name: str, output_dir: str, caffe_proto_path: str, custom_layers_mapping_path: str = None): meta_info = get_meta_info(argv) caffe_pb2 = loader.import_caffe_pb2(caffe_proto_path) proto, model = loader.load_caffe_proto_model(caffe_pb2, proto_file_name, model_file_name) update_extractors_with_extensions( caffe_type_extractors, argv.disable_omitting_optional if hasattr( argv, 'disable_omitting_optional') else False, argv.disable_flattening_optional_params if hasattr( argv, 'disable_flattening_optional_params') else False) try: graph, original_shapes = loader.caffe_pb_to_nx(proto, model) except ValueError as e: raise Error( 'Invalid prototxt file: value error {}. ' + refer_to_faq_msg(11), str(e)) from e graph.check_empty_graph('load_caffe_proto_model') graph.__setattr__('proto_path', proto_file_name) graph.__setattr__('caffemodel_path', model_file_name) graph.__setattr__('name', getattr(proto, 'name', None) or output_model_name) graph.graph['layout'] = 'NCHW' graph.graph['cmd_params'] = argv graph.graph['fw'] = 'caffe' if graph.graph['cmd_params'].generate_experimental_IR_V10: version = 10 else: version = 6 graph.graph[ 'ir_version'] = 2 if argv.generate_deprecated_IR_V2 else version graph.graph['original_shapes'] = original_shapes graph.graph['caffe_pb2'] = caffe_pb2 custom_layers_map = custom_layers_mapping.load_layers_xml( custom_layers_mapping_path) custom_layers_mapping.update_extractors( caffe_type_extractors, custom_layers_map, argv.disable_omitting_optional if hasattr( argv, 'disable_omitting_optional') else False, argv.enable_flattening_nested_params if hasattr( argv, 'enable_flattening_nested_params') else False) extract_node_attrs( graph, lambda node: caffe_extractor( node, check_for_duplicates(caffe_type_extractors))) # --------------------------------- LOAD END ------------------------------------------------------ class_registration.apply_replacements(graph, [ class_registration.ClassType.FRONT_REPLACER, class_registration.ClassType.MIDDLE_REPLACER, class_registration.ClassType.BACK_REPLACER ]) prepare_emit_ir(graph=graph, data_type=argv.data_type, output_dir=output_dir, output_model_name=output_model_name, mean_data=graph.graph['mf'], input_names=graph.graph['input_names'], meta_info=meta_info) return 0