def replace_pattern(graph: Graph, match: dict):
        node = match['op']
        pair_node = Node(graph, node.pair_name)

        if node.t >= 0:
            raise Error('Does not support IfDefined with t > 0')

        if node.in_port(0).get_source() is not None:
            input_port = node.in_port(0).get_source()
            op_output_id = node.out_port(0).get_destination().node.id
            out_port = pair_node.out_port(0)
            node_name = node.name
            pair_name = pair_node.name
        else:
            input_port = pair_node.in_port(0).get_source()
            op_output_id = pair_node.out_port(0).get_destination().node.id
            out_port = node.out_port(0)
            node_name = pair_node.name
            pair_name = node.name

        in_shape = input_port.data.get_shape()
        node_t = abs(node.t)

        init_value_memory_out = create_zero_value_with_batch_from_input(
            input_port, in_shape[1] * node_t)
        memory_out = ReadValue(graph, {
            'name': pair_name,
            'variable_id': node_name + pair_name
        }).create_node()
        init_value_memory_out.out_port(0).connect(memory_out.in_port(0))

        if node_t > 1:
            crop_concat = Crop(
                graph, {
                    'name': 'Memory_crop',
                    'dim': np.array([in_shape[1] * (node_t - 1)]),
                    'offset': np.array([in_shape[1]]),
                    'axis': np.array([1])
                }).create_node()
            memory_out.out_port(0).connect(crop_concat.in_port(0))
            concat = Concat(graph, {'name': 'Memory_concat'}).create_node()
            concat.add_sequence_of_ports('in', range(2))
            crop_concat.out_port(0).connect(concat.in_port(0))
            concat.in_port(1).connect(input_port)

            memory_in = Assign(graph, {
                'name': node_name,
                'variable_id': node_name + pair_name
            }).create_node()
            concat.out_port(0).connect(memory_in.in_port(0))
            out = Result(graph, {'name': 'Memory_output'}).create_node()
            memory_in.out_port(0).connect(out.in_port(0))

            crop_out = Crop(
                graph, {
                    'name': 'Memory_crop_out',
                    'dim': np.array([in_shape[1]]),
                    'offset': np.array([0]),
                    'axis': np.array([1])
                }).create_node()
            memory_out.out_port(0).connect(crop_out.in_port(0))
            out_port.get_connection().set_source(crop_out.out_port(0))
        else:
            memory_in = Assign(graph, {
                'name': node_name,
                'variable_id': node_name + pair_name
            }).create_node()
            memory_in.in_port(0).connect(input_port)
            out = Result(graph, {'name': 'Memory_output'}).create_node()
            memory_in.out_port(0).connect(out.in_port(0))
            out_port.get_connection().set_source(memory_out.out_port(0))

        if not graph.graph['cmd_params'].static_shape:
            log.error(
                "Model can not be translated in a reshape-able way.\n"
                "Model Optimizer key static_shape was turned on to prevent related errors.\n"
                "There will be no success changing input shapes of the model with the help of "
                "InferenceEngine reshape method",
                extra={'is_warning': True})
            graph.graph['cmd_params'].static_shape = True

        graph.remove_node(op_output_id)
        graph.remove_node(node.id)
        graph.remove_node(pair_node.id)
    def replace_pattern(graph: Graph, match: dict):
        node = match['op']
        pair_node = Node(graph, node.pair_name)

        if node.t >= 0:
            raise Error('Does not support IfDefined with t > 0')

        if node.in_port(0).get_source() is not None:
            input_port = node.in_port(0).get_source()
            op_output_id = node.out_port(0).get_destination().node.id
            out_port = pair_node.out_port(0)
            node_name = node.name
            pair_name = pair_node.name
        else:
            input_port = pair_node.in_port(0).get_source()
            op_output_id = pair_node.out_port(0).get_destination().node.id
            out_port = node.out_port(0)
            node_name = pair_node.name
            pair_name = node.name

        in_shape = input_port.data.get_shape()
        node_t = abs(node.t)

        init_value_memory_out = create_zero_value_with_batch_from_input(input_port, in_shape[1]*node_t)
        memory_out = ReadValue(graph, {'name': pair_name, 'variable_id': node_name+pair_name}).create_node()
        init_value_memory_out.out_port(0).connect(memory_out.in_port(0))

        if node_t > 1:
            crop_concat = Crop(graph, {'name': 'Memory_crop', 'dim': np.array([in_shape[1]*(node_t-1)]),
                                       'offset': np.array([in_shape[1]]), 'axis': np.array([1])}).create_node()
            memory_out.out_port(0).connect(crop_concat.in_port(0))
            concat = Concat(graph, {'name': 'Memory_concat'}).create_node()
            concat.add_sequence_of_ports('in', range(2))
            crop_concat.out_port(0).connect(concat.in_port(0))
            concat.in_port(1).connect(input_port)

            memory_in = Assign(graph, {'name': node_name, 'variable_id': node_name + pair_name}).create_node()
            concat.out_port(0).connect(memory_in.in_port(0))
            out = Result(graph, {'name': 'Memory_output'}).create_node()
            memory_in.out_port(0).connect(out.in_port(0))

            crop_out = Crop(graph, {'name': 'Memory_crop_out', 'dim': np.array([in_shape[1]]),
                                    'offset': np.array([0]), 'axis': np.array([1])}).create_node()
            memory_out.out_port(0).connect(crop_out.in_port(0))
            out_port.get_connection().set_source(crop_out.out_port(0))
        else:
            memory_in = Assign(graph, {'name': node_name, 'variable_id': node_name + pair_name}).create_node()
            memory_in.in_port(0).connect(input_port)
            out = Result(graph, {'name': 'Memory_output'}).create_node()
            memory_in.out_port(0).connect(out.in_port(0))
            out_port.get_connection().set_source(memory_out.out_port(0))

        graph.remove_node(op_output_id)
        graph.remove_node(node.id)
        graph.remove_node(pair_node.id)
    def replace_pattern(graph: Graph, match: dict):
        node = match['op']

        if node.name == 'iteration_number_out':
            return

        # calculate length of context when state of inference becomes meaningful
        inputs = []
        for n in graph.get_op_nodes(**{'op': 'Parameter'}):
            inputs.append(n)

        in_nodes = []
        for inp in inputs:
            for ins in inp.out_port(0).get_destinations():
                in_nodes.append(ins.node.name)

        context_len = 1
        try:
            subgraph = invert_sub_graph_between_nodes(
                graph, [node.in_port(0).get_source().node.name], in_nodes)
        except Error:
            return

        for n in subgraph:
            n_node = Node(graph, n)
            if n_node.kind == 'op' and n_node.op == 'Splice':
                context_len += len(n_node.context) - 1

        if context_len == 1:
            return

        in_node_port = node.in_port(0).get_source()
        in_node_shape = node.in_port(0).data.get_shape()
        node.in_port(0).disconnect()

        # add Select before saving state to avoid saving garbage
        select_node = Select(graph, {
            'name': 'select_' + node.name
        }).create_node()
        zero_else = Const(graph, {
            'name': 'zero_else',
            'value': np.zeros(in_node_shape)
        }).create_node()
        select_node.in_port(1).connect(in_node_port)
        select_node.in_port(2).connect(zero_else.out_port(0))

        # check if we have already appropriate iteration counter
        existing_counters = find_pattern_matches(
            graph,
            nodes=[('mem_in', dict(op='ReadValue')),
                   ('mem_in_data', dict(shape=int64_array([context_len]))),
                   ('crop_mem_in',
                    dict(op='Crop',
                         axis=int64_array([1]),
                         offset=int64_array([1]),
                         dim=int64_array([context_len - 1]))),
                   ('crop_mem_in_data', dict()),
                   ('concat', dict(op='Concat', axis=1)),
                   ('concat_data', dict()), ('const_1', dict(op='Const')),
                   ('const_1_data', dict()), ('mem_out', dict(op='Assign')),
                   ('crop_out',
                    dict(op='Crop',
                         axis=int64_array([1]),
                         offset=int64_array([0]),
                         dim=int64_array([1]))), ('crop_out_data', dict()),
                   ('select', dict(op='Select'))],
            edges=[('mem_in', 'mem_in_data'), ('mem_in_data', 'crop_mem_in'),
                   ('crop_mem_in', 'crop_mem_in_data'),
                   ('crop_mem_in_data', 'concat', {
                       'in': 0
                   }), ('const_1', 'const_1_data'),
                   ('const_1_data', 'concat', {
                       'in': 1
                   }), ('concat', 'concat_data'), ('concat_data', 'mem_out'),
                   ('concat_data', 'crop_out'), ('crop_out', 'crop_out_data'),
                   ('crop_out_data', 'select')])
        counter_match = next(existing_counters, None)
        if counter_match is not None:
            ones = Node(graph, inverse_dict(counter_match)['const_1'])
            input_port = Node(
                graph,
                inverse_dict(counter_match)['crop_out']).out_port(0)
        else:
            init_value_mem_out = create_zero_value_with_batch_from_input(
                in_node_port, context_len, np.int32)
            mem_out = ReadValue(
                graph, {
                    'name': 'iteration_number',
                    'variable_id': 'iteration_' + node.name
                }).create_node()
            mem_out.in_port(0).connect(init_value_mem_out.out_port(0))
            cut_first = Crop(
                graph, {
                    'name': 'cut_first',
                    'axis': int64_array([1]),
                    'offset': int64_array([1]),
                    'dim': int64_array([context_len - 1])
                }).create_node()
            cut_first.in_port(0).connect(mem_out.out_port(0))
            ones = Const(graph, {
                'name': 'ones',
                'value': np.ones([1, 1], dtype=np.int32)
            }).create_node()
            concat = Concat(graph, {
                'name': 'concat_ones',
                'in_ports_count': 2,
                'axis': 1
            }).create_node()
            concat.in_port(0).connect(cut_first.out_port(0))
            concat.in_port(1).connect(ones.out_port(0))
            mem_in = Assign(
                graph, {
                    'name': 'iteration_number_out',
                    'variable_id': 'iteration_' + node.name
                }).create_node()
            mem_in.in_port(0).connect(concat.out_port(0))
            res = Result(graph, {}).create_node()
            mem_in.out_port(0).connect(res.in_port(0))
            cut_last = Crop(
                graph, {
                    'name': 'cut_last',
                    'axis': int64_array([1]),
                    'offset': int64_array([0]),
                    'dim': int64_array([1])
                }).create_node()
            cut_last.in_port(0).connect(concat.out_port(0))
            input_port = cut_last.out_port(0)

        # Check if data from memory is 1
        # if it is True, we have correct data and should proceed with saving it to memory
        # else we have not gathered context and have garbage here, shouldn't change initial state of memory
        cast_in = Equal(graph, {
            'name': input_port.node.name + '/cast_to_bool'
        }).create_node()
        cast_in.in_port(0).connect(ones.out_port(0))
        cast_in.in_port(1).connect(input_port)
        select_node.in_port(0).connect(cast_in.out_port(0))
        select_node.out_port(0).connect(node.in_port(0))
        select_node.out_port(0).data.set_shape(in_node_shape)
示例#4
0
    def replace_op(self, graph: Graph, node: Node):
        input_out_port = node.in_port(0).get_source()

        memory_pair_input = unique_id('id')
        memory_pair_output = unique_id('id')

        # Input -> FullyConnected
        fc_layer_after_input_attrs = {
            'name': 'input_fullyconnected',
            'out-size': node.gifo_x_weights_shape[0],
            'transpose_weights': True,
            'bias_term': True,
        }

        fc_layer_after_input = FullyConnected(
            graph, fc_layer_after_input_attrs).create_node()
        fc_layer_after_input.in_port(0).connect(input_out_port)
        input_as_const(fc_layer_after_input, fc_layer_after_input_attrs, 1,
                       'weights', node.gifo_x_weights)
        input_as_const(fc_layer_after_input, fc_layer_after_input_attrs, 2,
                       'biases', node.gifo_biases)

        init_value_prev_lstm_output = create_zero_value_with_batch_from_input(
            input_out_port, node.gifo_r_weights_shape[1])
        prev_lstm_output = ReadValue(graph, {
            'name': 'prev_memory_output',
            'variable_id': memory_pair_input
        }).create_node()
        prev_lstm_output.in_port(0).connect(
            init_value_prev_lstm_output.out_port(0))

        # *Memory(output) -> FullyConnected
        fc_layer_from_prev_state_attrs = {
            'name': 'prev_memory_output_fullyconnected',
            'out-size': node.gifo_r_weights_shape[0],
            'transpose_weights': True,
            'bias_term': False,
        }

        fc_layer_from_prev_state = FullyConnected(
            graph, fc_layer_from_prev_state_attrs).create_node()
        fc_layer_from_prev_state.in_port(0).connect(
            prev_lstm_output.out_port(0))
        input_as_const(fc_layer_from_prev_state,
                       fc_layer_from_prev_state_attrs, 1, 'weights',
                       node.gifo_r_weights)

        # Memory -> FullyConnected  \
        #                           *Eltwise(sum)
        # Input -> FullyConnected   /
        join_input_prev_state_sum = Add(graph, {
            'name': 'join_input_eltwise'
        }).create_node()
        join_input_prev_state_sum.in_port(0).connect(
            fc_layer_from_prev_state.out_port(0))
        join_input_prev_state_sum.in_port(1).connect(
            fc_layer_after_input.out_port(0))

        # *Eltwise(sum) -> Split
        # it is split into 4 nodes: Act, Eltw*3
        # the following order is mandatory
        #       ___Tanh
        #      /
        # Split ---(2)Eltwise(sum)
        #     |\
        #     | \__(3)Eltwise(sum)
        #     |____(4)Eltwise(sum)
        split_joined_input_axis = Const(graph, {
            'value': np.int64(1)
        }).create_node()
        split_joined_input = Split(graph, {
            'name': 'join_input_split',
            'num_splits': 4,
            'out_ports_count': 4
        }).create_node()
        split_joined_input.in_port(0).connect(
            join_input_prev_state_sum.out_port(0))
        split_joined_input.in_port(1).connect(
            split_joined_input_axis.out_port(0))

        # prev_lstm_state = Memory(graph, {'name': 'prev_memory_state',
        #                                 'id': memory_pair_output,
        #                                 'index': 1,
        #                                 'size': 2,
        #                                 'shape': np.array([node.input_gate_weights.shape[0]], dtype=np.int64)
        #                                 }).create_node()
        init_value_prev_lstm_state = create_zero_value_with_batch_from_input(
            split_joined_input.out_port(0), node.input_gate_weights.shape[0])
        prev_lstm_state = ReadValue(graph, {
            'name': 'prev_memory_state',
            'variable_id': memory_pair_output
        }).create_node()
        prev_lstm_state.in_port(0).connect(
            init_value_prev_lstm_state.out_port(0))

        # *Memory(state) -> *ScaleShift(input)
        state_input_scaleshift_attrs = {
            'name': 'input_scaleshift',
            'bias_term': False
        }
        state_input_scaleshift = ScaleShiftOp(
            graph, state_input_scaleshift_attrs).create_node()
        state_input_scaleshift.in_port(0).connect(prev_lstm_state.out_port(0))
        input_as_const(state_input_scaleshift, state_input_scaleshift_attrs, 1,
                       'weights', node.input_gate_weights)

        # *Memory(state) -> *ScaleShift(forget)
        state_forget_scaleshift_attrs = {
            'name': 'forget_scaleshift',
            'bias_term': False
        }
        state_forget_scaleshift = ScaleShiftOp(
            graph, state_forget_scaleshift_attrs).create_node()
        state_forget_scaleshift.in_port(0).connect(prev_lstm_state.out_port(0))
        input_as_const(state_forget_scaleshift, state_forget_scaleshift_attrs,
                       1, 'weights', node.forget_gate_weights)

        # Split                                 \
        #                                       (2)Eltwise(sum)
        # Memory(state) -> *ScaleShift(input)  /
        join_prev_lstm_input_joined_input_sum = Add(
            graph, {
                'name': 'join_prev_lstm_input_joined_input_eltwise'
            }).create_node()
        join_prev_lstm_input_joined_input_sum.in_port(0).connect(
            split_joined_input.out_port(1))
        join_prev_lstm_input_joined_input_sum.in_port(1).connect(
            state_input_scaleshift.out_port(0))
        # Split                                 \
        #                                       (3)Eltwise(sum)
        # Memory(state) -> *ScaleShift(forget)  /
        join_prev_lstm_input_joined_forget_sum = Add(
            graph, {
                'name': 'join_prev_lstm_input_joined_forget_sum',
            }).create_node()
        join_prev_lstm_input_joined_forget_sum.in_port(0).connect(
            split_joined_input.out_port(2))
        join_prev_lstm_input_joined_forget_sum.in_port(1).connect(
            state_forget_scaleshift.out_port(0))

        # Split -> Tanh
        remember_tahn = Tanh(graph, {'name': 'remember_tahnv'}).create_node()
        remember_tahn.in_port(0).connect(split_joined_input.out_port(0))

        # Split -> (2)Eltwise(sum) -> *Sigmoid
        remember_sigmoid = Sigmoid(graph, {
            'name': 'remember_sigmoid'
        }).create_node()
        remember_sigmoid.in_port(0).connect(
            join_prev_lstm_input_joined_input_sum.out_port(0))

        # Split -> (3)Eltwise(sum) -> **Sigmoid
        forget_sigmoid = Sigmoid(graph, {
            'name': 'forget_sigmoid'
        }).create_node()
        forget_sigmoid.in_port(0).connect(
            join_prev_lstm_input_joined_forget_sum.out_port(0))

        # *Memory(state)                        \
        #                                       (6)Eltwise(mul)
        # Split -> (3)Eltwise(sum) -> **Sigmoid /
        join_forget_prev_state_mul = Mul(graph, {
            'name': 'join_forget_prev_state_mul'
        }).create_node()
        join_forget_prev_state_mul.in_port(0).connect(
            forget_sigmoid.out_port(0))
        join_forget_prev_state_mul.in_port(1).connect(
            prev_lstm_state.out_port(0))

        # Split -> Tahn                         \
        #                                       (5)Eltwise(mul)
        # Split -> (2)Eltwise(sum) -> *Sigmoid   /
        join_remember_candidates_mul = Mul(
            graph, {
                'name': 'join_remember_candidates_mul'
            }).create_node()
        join_remember_candidates_mul.in_port(0).connect(
            remember_tahn.out_port(0))
        join_remember_candidates_mul.in_port(1).connect(
            remember_sigmoid.out_port(0))

        # (5)Eltwise(mul)  \
        #               (7)Eltwise(sum)
        # (6)Eltwise(mul)   /
        join_forget_remember_sum = Add(graph, {
            'name': 'join_forget_remember_sum'
        }).create_node()
        join_forget_remember_sum.in_port(0).connect(
            join_forget_prev_state_mul.out_port(0))
        join_forget_remember_sum.in_port(1).connect(
            join_remember_candidates_mul.out_port(0))

        # (7)Eltwise(sum) -> Clamp
        join_forget_clamp = create_op_with_const_inputs(
            graph, Clamp, {
                1: np.array(-node.clip_value, dtype=np.float32),
                2: np.array(node.clip_value, dtype=np.float32)
            }, {'name': 'join_forget_clamp'}, join_forget_remember_sum)
        #
        # Clamp -> (2)Memory(state)
        next_lstm_state = Assign(graph, {
            'name': 'next_lstm_state',
            'variable_id': memory_pair_output
        }).create_node()
        next_lstm_state.in_port(0).connect(join_forget_clamp.out_port(0))

        res_node = Result(graph, {'name': 'next_lstm_state_out'}).create_node()
        res_node.in_port(0).connect(next_lstm_state.out_port(0))

        # Clamp -> (2)Tahn
        state_filtered_tahn = Tanh(graph, {
            'name': 'state_filtered_tahn'
        }).create_node()
        state_filtered_tahn.in_port(0).connect(join_forget_clamp.out_port(0))

        # Clamp -> (2)ScaleShift
        clamp_scaleshift_attrs = {
            'name': 'clamp_scaleshift',
            'bias_term': False
        }
        clamp_scaleshift = ScaleShiftOp(graph,
                                        clamp_scaleshift_attrs).create_node()
        clamp_scaleshift.in_port(0).connect(join_forget_clamp.out_port(0))
        input_as_const(clamp_scaleshift, clamp_scaleshift_attrs, 1, 'weights',
                       node.output_gate_weights)

        # Split                 \
        #                       (4)Eltwise(sum)
        # Clamp -> (2)ScaleShift /
        join_next_lstm_input_joined_input_sum = Add(
            graph, {
                'name': 'join_next_lstm_input_joined_input_sum',
            }).create_node()
        join_next_lstm_input_joined_input_sum.in_port(0).connect(
            split_joined_input.out_port(3))
        join_next_lstm_input_joined_input_sum.in_port(1).connect(
            clamp_scaleshift.out_port(0))

        # (4)Eltwise(sum) -> (3)Sigmoid
        output_sigmoid = Sigmoid(graph, {
            'name': 'output_sigmoid'
        }).create_node()
        output_sigmoid.in_port(0).connect(
            join_next_lstm_input_joined_input_sum.out_port(0))

        # (4)Eltwise(sum) -> (3)Sigmoid         \
        #                                       (5)Eltwise(mul)
        # Clamp -> (2)Tahn                      /
        joined_output_mul = Mul(graph, {
            'name': 'joined_output_mul'
        }).create_node()
        joined_output_mul.in_port(0).connect(state_filtered_tahn.out_port(0))
        joined_output_mul.in_port(1).connect(output_sigmoid.out_port(0))

        # (5)Eltwise(mul) -> (3)FullyConnected
        fc_output_attrs = {
            'name': 'FullyConnected',
            'out-size': node.projection_weights_shape[0],
            'transpose_weights': True,
            'bias_term': False
        }
        fc_output = FullyConnected(graph, fc_output_attrs).create_node()
        fc_output.in_port(0).connect(joined_output_mul.out_port(0))
        input_as_const(fc_output, fc_output_attrs, 1, 'weights',
                       node.projection_weights)

        #                   / (2)Memory(output)
        # (3)FullyConnected
        #                   \ Output (any next node) (edge created automatically after replacement)
        next_lstm_output = Assign(graph, {
            'name': 'next_lstm_output',
            'variable_id': memory_pair_input
        }).create_node()
        next_lstm_output.in_port(0).connect(fc_output.out_port(0))

        res_node_lstm_output = Result(graph, {
            'name': 'next_lstm_output_out'
        }).create_node()
        res_node_lstm_output.in_port(0).connect(next_lstm_output.out_port(0))

        return [fc_output.id]
示例#5
0
    def replace_pattern(graph: Graph, match: dict):
        node = match['op']
        in_shape = node.in_port(0).data.get_shape().copy()
        memory_element = in_shape[1] - node.const_dim
        memory_size = memory_element * len(node.context)

        memory_pair_id = unique_id('id')
        # Memory(in)
        input_memory = ReadValue(graph, {
            'name': 'prev_splice_memory',
            'variable_id': memory_pair_id
        }).create_node()

        # Memory(in)  \
        #             Crop
        # Input(temp) /
        crop = Crop(
            graph, {
                'name': 'Splice_Crop',
                'axis': int64_array([1]),
                'offset': int64_array([memory_element]),
                'dim': int64_array([memory_size - memory_element])
            }).create_node()
        crop.in_port(0).connect(input_memory.out_port(0))

        # Crop   \
        #         Concat
        # Input  /
        concat_node = Concat(graph, {
            'name': 'Splice_Concat',
            'in_ports_count': 2,
            'axis': 1
        }).create_node()
        concat_node.in_port(0).connect(crop.out_port(0))

        # Concat -> Memory(out)
        mem_out = Assign(graph, {
            'name': 'out_splice_memory',
            'variable_id': memory_pair_id
        }).create_node()
        mem_out.in_port(0).connect(concat_node.out_port(0))
        Result(graph).create_node().in_port(0).connect(mem_out.out_port(0))

        if node.const_dim != 0:
            memory_element_constdim = node.const_dim
            memory_size_constdim = memory_element_constdim * len(node.context)

            split = create_op_with_const_inputs(
                graph, VariadicSplit, {
                    1: int64_array(1),
                    2: int64_array([memory_element, memory_element_constdim])
                }, {
                    'name': node.id + '_split_const',
                    'out_ports_count': 2
                })

            split.out_port(0).connect(concat_node.in_port(1))

            # create separate splice construction for const_dim
            memory_pair_id = unique_id('memory_for_const_dim')
            init_value_input_memory_const_dim = Const(
                graph, {
                    'name':
                    'init_value_const_dim_in_memory',
                    'value':
                    np.zeros(int64_array([in_shape[0], memory_size_constdim])),
                    'shape':
                    int64_array([in_shape[0], memory_size_constdim])
                }).create_node()
            input_memory_const_dim = ReadValue(graph, {
                'name': 'const_dim_in_memory',
                'variable_id': memory_pair_id
            }).create_node()
            init_value_input_memory_const_dim.out_port(0).connect(
                input_memory_const_dim.in_port(0))

            crop_const_dim = Crop(
                graph, {
                    'name':
                    'const_dim_crop',
                    'axis':
                    int64_array([1]),
                    'offset':
                    int64_array([memory_element_constdim]),
                    'dim':
                    int64_array(
                        [memory_size_constdim - memory_element_constdim])
                }).create_node()
            crop_const_dim.in_port(0).connect(
                input_memory_const_dim.out_port(0))

            concat_node_const_dim = Concat(graph, {
                'name': 'const_dim_concat',
                'in_ports_count': 2,
                'axis': 1
            }).create_node()
            concat_node_const_dim.in_port(0).connect(
                crop_const_dim.out_port(0))

            mem_out_const_dim = Assign(graph, {
                'name': 'const_dim_out_memory',
                'variable_id': memory_pair_id
            }).create_node()
            mem_out_const_dim.in_port(0).connect(
                concat_node_const_dim.out_port(0))
            Result(graph).create_node().in_port(0).connect(
                mem_out_const_dim.out_port(0))

            # connect splice to Split as begin and Concat as the end
            split.out_port(1).connect(concat_node_const_dim.in_port(1))
            crop_first = Crop(
                graph, {
                    'name': 'const_dim_crop_first',
                    'axis': int64_array([1]),
                    'offset': int64_array([0]),
                    'dim': int64_array([memory_element_constdim])
                }).create_node()
            crop_first.in_port(0).connect(concat_node_const_dim.out_port(0))

            concat_const = Concat(graph, {
                'name': node.id + '_concat_const',
                'axis': 1,
                'in_ports_count': 2
            }).create_node()
            concat_const.in_port(1).connect(crop_first.out_port(0))
            concat_const.in_port(0).connect(concat_node.out_port(0))

            init_value_input_memory = Const(
                graph, {
                    'name': 'init_value_' + node.name,
                    'value': np.zeros(int64_array([in_shape[0], memory_size])),
                    'shape': int64_array([in_shape[0], memory_size])
                }).create_node()
            init_value_input_memory.out_port(0).connect(
                input_memory.in_port(0))
            node.in_port(0).get_connection().set_destination(split.in_port(0))
            node.out_port(0).get_connection().set_source(
                concat_const.out_port(0))
        else:
            init_value_input_memory = Const(
                graph, {
                    'name': 'init_value_' + node.name,
                    'value': np.zeros(int64_array([in_shape[0], memory_size])),
                    'shape': int64_array([in_shape[0], memory_size])
                }).create_node()
            init_value_input_memory.out_port(0).connect(
                input_memory.in_port(0))
            node.in_port(0).get_connection().set_destination(
                concat_node.in_port(1))
            node.out_port(0).get_connection().set_source(
                concat_node.out_port(0))

        # to avoid re-inference of shape and touching in next replacements
        graph.remove_node(node.id)
示例#6
0
    def insert_select(graph: Graph, node: Node):
        context_len = node.frame_time + 1

        if context_len == 1:
            return

        in_node_port = node.in_port(0).get_source()
        in_node_shape = node.in_port(0).data.get_shape()
        node.in_port(0).disconnect()

        # add Select before saving state to avoid saving garbage
        select_node = Select(graph, {'name': 'select_' + node.name}).create_node()
        zero_else = create_const_with_batch_from_input(in_node_port, in_node_shape[1])
        select_node.in_port(1).connect(in_node_port)
        select_node.in_port(2).connect(zero_else.out_port(0))

        # check if we have already appropriate iteration counter
        existing_counters = find_pattern_matches(graph, nodes=[('mem_in', dict(op='ReadValue')),
                                                               ('mem_in_data', dict(shape=int64_array([context_len]))),
                                                               ('crop_mem_in', dict(op='Crop', axis=int64_array([1]),
                                                                                    offset=int64_array([1]),
                                                                                    dim=int64_array([context_len - 1]))),
                                                               ('crop_mem_in_data', dict()),
                                                               ('concat', dict(op='Concat', axis=1)),
                                                               ('concat_data', dict()),
                                                               ('const_1', dict(op='Const')),
                                                               ('const_1_data', dict()),
                                                               ('mem_out', dict(op='Assign')),
                                                               ('crop_out', dict(op='Crop', axis=int64_array([1]),
                                                                                 offset=int64_array([0]),
                                                                                 dim=int64_array([1]))),
                                                               ('crop_out_data', dict()),
                                                               ('select', dict(op='Select'))
                                                               ],
                                                 edges=[('mem_in', 'mem_in_data'), ('mem_in_data', 'crop_mem_in'),
                                                        ('crop_mem_in', 'crop_mem_in_data'),
                                                        ('crop_mem_in_data', 'concat', {'in': 0}),
                                                        ('const_1', 'const_1_data'),
                                                        ('const_1_data', 'concat', {'in': 1}),
                                                        ('concat', 'concat_data'), ('concat_data', 'mem_out'),
                                                        ('concat_data', 'crop_out'), ('crop_out', 'crop_out_data'),
                                                        ('crop_out_data', 'select')])
        counter_match = next(existing_counters, None)
        if counter_match is not None:
            ones = Node(graph, inverse_dict(counter_match)['const_1'])
            input_port = Node(graph, inverse_dict(counter_match)['crop_out']).out_port(0)
        else:
            init_value_mem_out = create_const_with_batch_from_input(in_node_port, context_len, precision=np.int32)
            mem_out = ReadValue(graph, {'name': 'iteration_number',
                                        'variable_id': 'iteration_' + node.name}).create_node()
            mem_out.in_port(0).connect(init_value_mem_out.out_port(0))
            cut_first = Crop(graph, {'name': 'cut_first', 'axis': int64_array([1]),
                                     'offset': int64_array([1]), 'dim': int64_array([context_len - 1])}).create_node()
            cut_first.in_port(0).connect(mem_out.out_port(0))
            ones = create_const_with_batch_from_input(in_node_port, 1, 1, np.int32)
            concat = Concat(graph, {'name': 'concat_ones', 'in_ports_count': 2, 'axis': 1}).create_node()
            concat.in_port(0).connect(cut_first.out_port(0))
            concat.in_port(1).connect(ones.out_port(0))
            mem_in = Assign(graph, {'name': 'iteration_number_out',
                                    'variable_id': 'iteration_' + node.name}).create_node()
            mem_in.in_port(0).connect(concat.out_port(0))
            res = Result(graph, {}).create_node()
            mem_in.out_port(0).connect(res.in_port(0))
            cut_last = Crop(graph, {'name': 'cut_last', 'axis': int64_array([1]),
                                    'offset': int64_array([0]), 'dim': int64_array([1])}).create_node()
            cut_last.in_port(0).connect(concat.out_port(0))
            input_port = cut_last.out_port(0)

        # Check if data from memory is 1
        # if it is True, we have correct data and should proceed with saving it to memory
        # else we have not gathered context and have garbage here, shouldn't change initial state of memory
        cast_in = Equal(graph, {'name': input_port.node.name + '/cast_to_bool'}).create_node()
        cast_in.in_port(0).connect(ones.out_port(0))
        cast_in.in_port(1).connect(input_port)
        select_node.in_port(0).connect(cast_in.out_port(0))
        select_node.out_port(0).connect(node.in_port(0))
        select_node.out_port(0).data.set_shape(in_node_shape)