def extract(cls, node): attrs = { 'axis': 1, 'end_axis': -1, } Flatten.update_node_stat(node, attrs) return cls.enabled
def extract(node): attrs = { 'axis': 1, 'end_axis': -1, } Flatten.update_node_stat(node, attrs) return __class__.enabled
def extract(cls, node): proto_layer = node.pb param = proto_layer.flatten_param attrs = { 'axis': param.axis, 'end_axis': param.end_axis, } Flatten.update_node_stat(node, attrs) return cls.enabled
def test_flatten_infer_no_shape(self): graph = build_graph( nodes_attributes, [('node_1', 'flatten_1'), ('flatten_1', 'node_2')], { 'node_2': { 'is_output': True, 'shape': None }, 'node_1': { 'shape': None }, 'flatten_1': { 'axis': 1 } }) flatten_node = Node(graph, 'flatten_1') Flatten.infer(flatten_node) res_shape = graph.node['node_2']['shape'] self.assertIsNone(res_shape)
def test_flatten_infer(self): graph = build_graph( nodes_attributes, [('node_1', 'flatten_1'), ('flatten_1', 'node_2')], { 'node_2': { 'is_output': True, 'shape': np.array([1, 3 * 256 * 256]) }, 'node_1': { 'shape': np.array([1, 3, 256, 256]) }, 'flatten_1': { 'axis': 1, 'dim': [] } }) flatten_node = Node(graph, 'flatten_1') Flatten.infer(flatten_node) exp_shape = np.array([1, 3 * 256 * 256]) res_shape = graph.node['node_2']['shape'] for i in range(0, len(exp_shape)): self.assertEqual(exp_shape[i], res_shape[i])
def extract(cls, node): attrs = { 'axis': node.module.axis, } Flatten.update_node_stat(node, attrs) return cls.enabled