csp_lda = make_pipeline(CSP(n_components=2), LDA()) ts_lr = make_pipeline(Covariances(estimator='oas'), TangentSpace(metric='riemann'), LR(C=1.0)) results = evaluation.process({'csp+lda': csp_lda, 'ts+lr': ts_lr}) print(results.head()) ############################################################################## # Electrode selection # ------------------- # # It is possible to select the electrodes that are shared by all datasets # using the `find_intersecting_channels` function. Datasets that have 0 # overlap with others are discarded. It returns the set of common channels, # as well as the list of datasets with valid channels. electrodes, datasets = find_intersecting_channels(datasets) evaluation = WithinSessionEvaluation(paradigm=paradigm, datasets=datasets, overwrite=True) results = evaluation.process({'csp+lda': csp_lda, 'ts+lr': ts_lr}) print(results.head()) ############################################################################## # Plot results # ------------ # # Compare the obtained results with the two pipelines, CSP+LDA and logistic # regression computed in the tangent space of the covariance matrices. fig = moabb_plt.paired_plot(results, 'csp+lda', 'ts+lr') plt.show()
def test_channel_intersection_fun(self): print(utils.find_intersecting_channels([d() for d in utils.dataset_list])[0])