def load_jit_model(arch_name, progress=True): assert ( arch_name in PRETRAINED_MODELS ), f"Invalid arch {arch_name}, supported arch {PRETRAINED_MODELS.keys()}" model_info = PRETRAINED_MODELS[arch_name] model_path = model_info["model_path"] if model_path.startswith("https://"): model_path = hub_utils.download_file(model_path, progress=progress) model = torch.jit.load(model_path, map_location="cpu") model.model_info = model_info return model
def _load_fbnet_state_dict(self, file_name, progress=True): if file_name.startswith("https://"): file_name = hub_utils.download_file(file_name, progress=progress) state_dict = torch.load(file_name, map_location="cpu")["state_dict"] ret = {} for name, val in state_dict.items(): if name.startswith("module."): name = name[len("backbone.module."):] if name[0] == '.': continue ret[name] = val return ret
def _load_fbnet_state_dict(file_name, progress=True): if file_name.startswith("https://"): file_name = hub_utils.download_file(file_name, progress=progress) state_dict = torch.load(file_name, map_location="cpu") if "model_ema" in state_dict and state_dict["model_ema"] is not None: state_dict = state_dict["model_ema"] else: state_dict = state_dict["state_dict"] ret = {} for name, val in state_dict.items(): if name.startswith("module."): name = name[len("module."):] ret[name] = val return ret