out_file = r'/home/oanhnt/thainh/data/database/train-opt{}.pickle'.format(opt_size) else: out_file = r'/home/oanhnt/thainh/data/database/test-opt{}.pickle'.format(opt_size) valid_file = r'/home/oanhnt/thainh/data/database/test-opt{}.pickle'.format(opt_size) else: if train: out_file = '/mnt/smalldata/database/train-opt2.pickle' else: out_file = '/mnt/smalldata/database/test-opt2.pickle' # Spatial input_x = Input(shape=(224,224,3)) if train: x = mobilenet.mobilenet_by_me( name='spatial', inputs=input_x, input_shape=(224,224,3), classes=classes, weight='weights/mobilenet_spatial_{}e.h5'.format(spa_epochs)) else: x = mobilenet.mobilenet_by_me( name='spatial', inputs=input_x, input_shape=(224,224,3), classes=classes) # Temporal input_y = Input(shape=(224,224,20)) if train: y = mobilenet.mobilenet_by_me( name='temporal', inputs=input_y,
classes = int(sys.argv[7]) server = config.server() if server: if train: out_file = r'/home/oanhnt/thainh/data/database/train-all.pickle' else: out_file = r'/home/oanhnt/thainh/data/database/test-all.pickle' valid_file = r'/home/oanhnt/thainh/data/database/test-all.pickle' # Spatial input_x = Input(shape=(224, 224, 3)) if train: x = mobilenet.mobilenet_by_me( name='spatial', inputs=input_x, input_shape=(224, 224, 3), classes=classes, weight='weights/mobilenet_spatial_{}e.h5'.format(spa_epochs)) else: x = mobilenet.mobilenet_by_me(name='spatial', inputs=input_x, input_shape=(224, 224, 3), classes=classes) # Temporal 1 input_y1 = Input(shape=(224, 224, 20)) if train: y1 = mobilenet.mobilenet_by_me( name='temporal1', inputs=input_y1, input_shape=(224, 224, 20),
valid_file = r'{}database/test-opt{}.pickle'.format( data_output_path, opt_size) else: out_file = r'{}database/test-opt{}.pickle'.format( data_output_path, opt_size) else: out_file = r'{}database/cross-opt{}.pickle'.format(data_output_path, opt_size) # Spatial input_x = Input(shape=(224, 224, 3)) if train: x = mobilenet.mobilenet_by_me(name='spatial', inputs=input_x, input_shape=(224, 224, 3), classes=classes, weight='weights/spatial_{}e_cr{}.h5'.format( spa_epochs, cross_index), non_train=True) else: x = mobilenet.mobilenet_by_me(name='spatial', inputs=input_x, input_shape=(224, 224, 3), classes=classes) # Temporal input_y = Input(shape=(224, 224, 20)) if train: y = mobilenet.mobilenet_by_me( name='temporal', inputs=input_y,
out_file = r'{}database/test-all.pickle'.format(data_output_path) else: out_file = r'{}database/cross-all.pickle'.format(data_output_path) inputs = [] outputs = [] for i in range(len(multi_opt_size)): opt = multi_opt_size[i] if opt == 0: # Spatial input_x = Input(shape=(224,224,3)) inputs.append(input_x) if train: x = mobilenet.mobilenet_by_me( name='spatial', inputs=input_x, input_shape=(224,224,3), classes=classes, weight='weights/spatial_{}e_cr{}.h5'.format(pretrains[i],cross_index)) else: x = mobilenet.mobilenet_by_me( name='spatial', inputs=input_x, input_shape=(224,224,3), classes=classes) outputs.append(x) else: # Temporal input_y = Input(shape=(224,224,20)) inputs.append(input_y) if train:
[K.count_params(p) for p in set(model.non_trainable_weights)]) total_memory = 4.0 * batch_size * (shapes_mem_count + trainable_count + non_trainable_count) gbytes = np.round(total_memory / (1024.0**3), 3) return gbytes classes = 11 depth = 20 drop_rate = 0.5 input_x = Input(shape=(224, 224, 3)) x = mobilenet.mobilenet_by_me(name='spatial', inputs=input_x, input_shape=(224, 224, 3), classes=classes) # Temporal input_y1 = Input(shape=(224, 224, 20)) input_y2 = Input(shape=(224, 224, 20)) input_y3 = Input(shape=(224, 224, 20)) inputs = [input_y1, input_y2, input_y3] y = mobilenet.mobilenet_new(name='temporal', inputs=inputs, input_shape=(224, 224, 20), classes=classes) z = Concatenate()([x, y]) z = GlobalAveragePooling2D()(z)