def test_two_matrices_are_classified(mocked_cli, mocked_keras, mocked_validator, mocked_np): Classifier.set_output_service(CLIOutputService(mocked_cli)) mocked_validator.side_effect = [True, True] CLIOutputService(mocked_cli) matrix_path = "modules/test/unittest/shared/data/two_labeled_matrices.hdf5" mocked_np.side_effect = [[1, 1]] Classifier.start(matrix_path, "") mocked_cli.assert_has_calls([ call.print("matrix: 1, predicted solver: Cg"), call.print("matrix: 2, predicted solver: Cg") ])
def test_classify_throws_error_if_matrix_is_irregular(mocked_validator, mocked_cli): Classifier.set_output_service(CLIOutputService(mocked_cli)) mocked_validator.side_effect = [False] CLIOutputService(mocked_cli) Classifier.start( "modules/test/unittest/shared/data/one_labeled_matrix.hdf5", "network") mocked_cli.assert_has_calls( [call.print("IllegalArgumentException: The matrix is not regular")])
def test_matrix_is_classified_with_cg_as_result(mocked_cli, mocked_keras, mocked_validator, mocked_np): Classifier.set_output_service(CLIOutputService(mocked_cli)) mocked_validator.side_effect = [True] CLIOutputService(mocked_cli) matrix_path = "modules/test/unittest/shared/data/one_labeled_matrix.hdf5" mocked_np.side_effect = [[1]] Classifier.start(matrix_path, "") mocked_cli.assert_has_calls( [call.print("matrix: 1, predicted solver: Cg")])
def test_print_error(mocked_cli): error = IllegalArgumentException("Error") output_service = CLIOutputService(mocked_cli) output_service.print_error(error) mocked_cli.assert_has_calls( [call.print(error.get_type() + ": " + "Error")])
def test_print_line(mocked_cli): output_service = CLIOutputService(mocked_cli) output_service.print_line("Hallo") mocked_cli.assert_has_calls([call.print("Hallo")])