示例#1
0
文件: run.py 项目: remykusters/modax
# Making data
x = jnp.linspace(-3, 4, 50)
t = jnp.linspace(0.5, 5.0, 20)
t_grid, x_grid = jnp.meshgrid(t, x, indexing="ij")
u = burgers(x_grid, t_grid, 0.1, 1.0)

X = jnp.concatenate([t_grid.reshape(-1, 1), x_grid.reshape(-1, 1)], axis=1)
y = u.reshape(-1, 1)
y += noise * jnp.std(y) * random.normal(key, y.shape)

# Defning model and optimizers
model = Deepmod([30, 30, 30, 1])
optimizer_def = optim.Adam(learning_rate=2e-3, beta1=0.99, beta2=0.99)

# Running warm restart bayes
update_fn = create_update(loss_fn_SBL, (model, X, y, True))
for run_idx, subkey in enumerate(random.split(key, n_runs)):
    print(f"Starting SBL run {run_idx}")
    variables = model.init(subkey, X)
    state, params = variables.pop("params")
    state = (state, {"prior_init": None})  # adding prior to state
    optimizer = optimizer_def.create(params)
    train_max_iter(
        update_fn,
        optimizer,
        state,
        max_iterations,
        log_dir=script_dir + f"sbl_run_{run_idx}/",
    )
示例#2
0
# Defning model and optimizers
model = Deepmod([30, 30, 30, 1])
optimizer_def = optim.Adam(learning_rate=2e-3, beta1=0.99, beta2=0.99)

# Running PINN with overcomplete library
update_fn = create_update(loss_fn_pinn, (model, X, y))
for run_idx, subkey in enumerate(random.split(key, n_runs)):
    print(f"Starting multitask run {run_idx}")
    variables = model.init(subkey, X)
    state, params = variables.pop("params")
    optimizer = optimizer_def.create(params)
    train_max_iter(
        update_fn,
        optimizer,
        state,
        max_iterations,
        log_dir=script_dir + f"burgers_pinn_run_{run_idx}/",
    )

# Running bayes with overcomplete library
update_fn = create_update(loss_fn_bayesian_ridge, (model, X, y, True))
for run_idx, subkey in enumerate(random.split(key, n_runs)):
    print(f"Starting bayes warm run {run_idx}")
    variables = model.init(subkey, X)
    state, params = variables.pop("params")
    state = (state, {"prior_init": None})  # adding prior to state
    optimizer = optimizer_def.create(params)
    train_max_iter(
        update_fn,
        optimizer,
示例#3
0
# Defning model and optimizers
model = Deepmod([30, 30, 30, 1])
optimizer_def = optim.Adam(learning_rate=2e-3, beta1=0.99, beta2=0.99)

# Running multitask
update_fn = create_update(loss_fn_multitask_precalc, (model, X, y))
for run_idx, subkey in enumerate(random.split(key, n_runs)):
    print(f"Starting multitask run {run_idx}")
    variables = model.init(subkey, X)
    state, params = variables.pop("params")
    optimizer = optimizer_def.create(params)
    train_max_iter(
        update_fn,
        optimizer,
        state,
        max_iterations,
        log_dir=script_dir + f"multitask_run_{run_idx}/",
    )

# Running bayesian multitask
update_fn = create_update(loss_fn_pinn_bayes_mse_hyperprior, (model, X, y))
for run_idx, subkey in enumerate(random.split(key, n_runs)):
    print(f"Starting bayes run {run_idx}")
    variables = model.init(subkey, X)
    state, params = variables.pop("params")
    optimizer = optimizer_def.create(params)
    train_max_iter(
        update_fn,
        optimizer,
        state,
示例#4
0
from modax.training.utils import create_update
from flax import optim

from modax.training import train_max_iter
from modax.training.losses.bayesian_regression import loss_fn_bayesian_ridge

# %% Making data
key = random.PRNGKey(42)

x = jnp.linspace(-3, 4, 50)
t = jnp.linspace(0.5, 5.0, 20)
t_grid, x_grid = jnp.meshgrid(t, x, indexing="ij")
u = burgers(x_grid, t_grid, 0.1, 1.0)

X = jnp.concatenate([t_grid.reshape(-1, 1), x_grid.reshape(-1, 1)], axis=1)
y = u.reshape(-1, 1)
y += 0.10 * jnp.std(y) * random.normal(key, y.shape)

# %% Building model and params
model = Deepmod([30, 30, 30, 1])
variables = model.init(key, X)

optimizer = optim.Adam(learning_rate=2e-3, beta1=0.99, beta2=0.99)
state, params = variables.pop("params")
optimizer = optimizer.create(params)

state = (state, {"prior_init": None})  # adding prior to state
update_fn = create_update(loss_fn_bayesian_ridge, (model, X, y, True))

optimizer, state = train_max_iter(update_fn, optimizer, state, 10000)
示例#5
0
# Defning model and optimizers
model = Deepmod([30, 30, 30, 1])
optimizer_def = optim.Adam(learning_rate=2e-3, beta1=0.99, beta2=0.99)

# Running PINN
update_fn = create_update(loss_fn_pinn, (model, X, y))
for run_idx, subkey in enumerate(random.split(key, n_runs)):
    print(f"Starting multitask run {run_idx}")
    variables = model.init(subkey, X)
    state, params = variables.pop("params")
    optimizer = optimizer_def.create(params)
    train_max_iter(
        update_fn,
        optimizer,
        state,
        max_iterations,
        log_dir=script_dir + f"pinn_run_{run_idx}/",
    )

# Running warm restart bayes
update_fn = create_update(loss_fn_bayesian_ridge, (model, X, y, True))
for run_idx, subkey in enumerate(random.split(key, n_runs)):
    print(f"Starting bayes warm run {run_idx}")
    variables = model.init(subkey, X)
    state, params = variables.pop("params")
    state = (state, {"prior_init": None})  # adding prior to state
    optimizer = optimizer_def.create(params)
    train_max_iter(
        update_fn,
        optimizer,